PREPARATION OF TITANIUM DIOXIDE MODIFIED EXPANDABLE GRAPHITE WITH OXIDATION INTERCALATION AND HYDROLYSIS PRECIPITATION METHOD AND ITS FLAME RETARDANCY FOR POLYETHYLENE

*Shu-xia Ren and Xiu-yan Pang

College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China *Author for Correspondence

ABSTRACT

A type of expendable graphite (EG_{T1}) modified by titanium dioxide was stepwise prepared through chemical oxidation and hydrolysis precipitation reaction, and the synthesizing method was established through single-factor experiment. The EG_{T1} dilatability, crystal structure, main functional groups and flame retardation for Liner low density polyethylene (LLDPE) were all characterized. The optimal conditions for preparation are as follows: mass ratio of TiCl₄ to normal expandable graphite (EG) prepared in advance with chemical oxidation method is 0.35:1, dosage of NH₃·H₂O with a wt% of 25% is controlled as 0.32 g/g. The prepared EG_{T1} keeps a layer structure just like natural graphite, and the hydrolysis product of TiCl₄ is TiO₂ after high temperature roasting. EG_{T1} indicates better flame retardancy for LLDPE than the normal EG, pure TiO₂, EG_{T2} prepared with chemical oxidation intercalation method with TiCl₄ as assistant intercalator, binary-mixture of EG and TiO₂. Furthermore, there is synergistic effect between ammonium polyphosphate (APP) and EG_{T1} , the combination makes the 70LLDPE/20EG_{T1}/10APP composite show a better LOI of 31.3%.

Keywords: Modified Expandable Graphite, TiO₂, Oxidation Intercalation Reaction, Hydrolysis Precipitation, Flame Retardancy

INTRODUCTION

Graphite is a crystal compound with graphene planes structure bonded by the weak Van Der Waals force. Many compounds can intercalate graphene layers through oxidation and intercalation reaction, and then the graphite intercalation compounds (GICs) called expandable graphite (EG) can be prepared (Ma, 1993; Pang and Sun, 2014). EG has showed catalysis for the esterification between organic acid and alcohol (Lin *et al.*, 2013), and its high temperature expansion product named expanded graphite is a kind of adsorbent with well adsorbtion capability for floating oil and other pollutants (Pang *et al.*, 2009; Toyoda *et al.*, 2000). Furthermore, EG is an intumescent type flame retardant (FR) with functions of charformation and smoke suppressing. Due to its outstanding flame retardation, expandable graphite has been widely used as FR of polyolefin (Xie and Qu, 2001), ethylene–vinyl acetate (Pang *et al.*, 2015), polyurethane (Pang *et al.*, 2002) and so on.

In the preparation of EG, H_2SO_4 is a commonly used intercalator due to its strong oxidizability, low-price and well dilatability of the obtained product (Shioyam and Fujii, 1987). However, the use of H_2SO_4 normally leads to high sulfur content in GIC and corrosion for storage devices. Besides, more SO₂ gas will release in its combustion reaction. Therefore, the intercalation reaction requires improvement, or the obtained normal EG needs modification. Firstly, the wide intercalation possibilities permit graphite to possess definite properties (Shornikova *et al.*, 2006), some assistant intercalators such as nitric acid, oxalic acid, acetic anhydrate can replace a part of H_2SO_4 (Song *et al.*, 1993; Song *et al.*, 1996). EG intercalated by H_2SO_4 /acetic acid indicated an expandable volume (EV) of 460 mL/g and limited oxygen index (LOI) value of 28.1% for Liner low density polyethylene (LLDPE) (Pang *et al.*, 2013). It was higher than that of the single H_2SO_4 intercalated EG with an EV of 390 mL/g and LOI value of 24.0% respectively. The EG intercalated by H_2SO_4 intercalated product (Zhao *et al.*, 2016). Through outside surface modification by chemical bonding or sol-gel hydrolysis precipition methods, EG can also get

Research Article

excellent property. The titanium dioxide (TiO_2) nanocrystals in EG could be prepared using organically modified silicate as a binder (Ramanathan *et al.*, 1997). The EG prepared using chemical bonding method with silane coupling agent and boric acid presented improved flame retardancy for rigid polyurethane foam (Xu *et al.*, 2013). An expanded graphite loading anatase TiO₂ was prepared through sol-gel process with TiO₂ gel introduced to EG surface (Lai *et al.*, 2010).

 TiO_2 is a good FR attributing to prolonging ignition time and slowing combustion speed (Mosurkal *et al.*, 2008). In addition, as one of transition metal oxides, TiO_2 has obvious impact on the thermal decomposition process of ammonium polyphosphate (APP) (Zhou et al., 2013), it can accelerate the release of NH₃ and H₂O in the earlier period, and increase the high temperature residues in the later period due to the formation of metallic phosphate. In view of the independent flame retardation of EG, APP, TiO_2 , and acceleration decomposition of TiO_2 for APP, the purpose of this research was to prepare a TiO_2 modified GIC (written as EG_{T1}) through hydrolysis precipitation reaction between TiCl₄ and EG synthesized by chemical oxidation method in advance. A preparation method of the EG_{T1} was found with natural graphite (C), KMnO₄, H₂SO₄, titanium tetrachloride (TiCl₄, precursor of TiO₂ by hydrolysis reaction), NH₃·H₂O as materials, and its flame retardancy for LLDPE was compared with the normal EG, TiO_2 , EG_{T2} (synthesized through chemical oxidation intercalation reaction with titanium tetrachloride as assistant-intercalator (Pang *et al.*, 2009)), binary mixture of TiO_2 and EG. Furthermore, the combined flame retardation of these FRs including APP for LLDPE was discussed also. Scanning electron microscope (SEM), X-ray diffraction spectroscopy (XRD) and Fourier transform infrared spectroscopy (FTIR) were employed to characterize morphology and structure of the prepared TiO₂ modified EG. The flame retardant performance was characterized in the LOI and vertical combustion tests of LLDPE.

MATERIALS AND METHODS

Natural flake graphite (average particle size of 0.30 mm, carbon content of 96 wt%) was provided by Xite Carbon CO. LTD, Qingdao, China. LLDPE (920NT(EGF-34), melt index 0.2 g/min) was purchased from Sinopec Sabic Tianjin Petrochemical. KMnO₄, NH₃·H₂O (25 wt%), H₂SO₄ (98 wt%) and TiCl₄ were all analytical agents and used as received.

Preparation of the EG_{TI}

Firstly, the normal EG was synthesized through chemical oxidation intercalation reaction with KMnO₄ as oxidant and H_2SO_4 as intercalator (Pang, 2012) as per the mass ratio graphite (C): H_2SO_4 (75 wt%):KMnO₄ of 1.0:6.67:0.15. The obtained EG showed an EV of 400 mL/g at 800°C. Then, reactants with definite mass were added into beaker in the order of deionized water, the EG, NH₃·H₂O and TiCl₄. The hydrolysis reaction time maintained 2.0 h with continuous agitation at room temperature. After stewing 3.0 h, the solids were filtrated and dried at 100°C until it kept a constant mass, and then EG_{T1} obtained. The influence of NH₃·H₂O and TiCl₄ dosages on the EG_{T1} dilatability and flame retardancy for LLDPE labeled as LOI were optimized through single-factor experiments.

Check Test: Preparation of the EG₁₂ through Chemical Oxidation Intercalation Reaction

According to the reported method and its further optimization (Pang *et al.*, 2009), EG_{T2} was synthesized through chemical oxidation intercalation reaction between graphite and KMnO₄, H₂SO₄, TiCl₄ following the mass ratio C:H₂SO₄ (98 wt%):KMnO₄:TiCl₄ of 1:4.8:0.28:0.23. The obtained EG_{T2} showed an EV of 400 mL/g at 800°C. It has been testified TiO₂ can be prepared through the hydrolysis of TiCl₄ under the strong acidic condition as shown in equation (1), (2) and (3) (Zhang *et al.*, 2000). Therefore, the existence form of TiCl₄ in EG_{T1} is inferred as TiO₂.

 $TiCl_4 + H_2O = TiOH^{3+} + H^+ + 4C\Gamma$ (1)

 $TiOH^{3+} = TiO^{2+} + H^+$ (2)

 $TiO^{2+} + H_2O = TiO_2 + 2H^+$ (3)

Preparation of the Flame Retarded LLDPE Composites

FRs were added into the melted LLDPE at 120°C in Muller at a 30 wt% dosage, then the mixtures were pressed at 125°C and 10 MPa, and chopped into slivers with two different sizes of $120.0 \times 6.0 \times 3.0 \text{ mm}^3$ and $127.0 \times 13.0 \times 3.0 \text{ mm}^3$ for the evaluation of LOI and vertical combustion level.

Research Article

Characterization of the Samples

A TM3000 SEM (Japan) was applied to observe structure and morphology of the prepared GICs. The XRD pattern was obtained on a Y-4Q X-ray diffractometer operating at 40 kV, 30 mA, employing Nifiltered Cu K_a radiation with 2 θ ranging from 20° to 70°. The FTIR spectra of the prepared GICs were recorded between 4000-400 cm⁻¹ using a FTIR spectrometer (Nicolet 380, America Thermo Electron Corporation) with a resolution of 2 cm⁻¹.

The incised slivers with a size of $120.0 \times 6.0 \times 3.0 \text{ mm}^3$ were used to measure LOI according to Standard of GB/T2406-1993 with oxygen index instrument (Chengde, China). The vertical combustion test was performed using a HC-3 vertical burning instrument (Tientsin, China) on sheets with a size of $127.0 \times 13.0 \times 3.0 \text{ mm}^3$ as per the standard UL 94-1996.

RESULTS AND DISCUSSION

Optimization of Influence Factor in the Preparation of EG_{TI}

Influence of various factors on EG_{T1} dilatability and combustion LOI for LLDPE were optimized through single-factor experiments.

Influence of NH_3 : H_2O dosage on EV of the EG_{T1}

With dosage of the EG controlled as 1.0 g, mass ratio of TiCl₄ to EG set as 0.35 g/g, the influence of NH_3 ·H₂O dosage with mass concentration of 25 wt % on EV was tested and showed in Figure 1. In the tested concentration range, the influence is very slight, and the maximum EV is obtained when the dosage is controlled as 0.32 g/g. In this condition, the hydrolysis of TiCl₄ is completed, and the generated precipitation mass almost keeps constant.

Figure 2 Influence of TiCl₄ on EV and LOI

Influence of TiCl₄ Dosage on EV of EG_{TI} and LOI of the Flame Retarded LLDPE

With mass of the EG and NH_3 · H_2O set as 1.0 g and 0.32 g respectively, the influence of TiCl₄ dosage on EV of EG_{T1} and LOI of the flame retarded LLDPE was tested and showed in Figure 2 respectively. As showed in Figure 2, the EV sharply decreases with the increasing TiCl₄ mass. This is because the generated precipitation mass on EG surface increases with the increasing TiCl₄ mass, which would reduce the heat utilized for EG expansion. However, its influence on LOI of the flame retarded LLDPE is totally different. There is a maximum LOI value of 29.0% when it's controlled as 0.35g. The above results indicate the flame retardancy of the prepared EG_{T1} for LLDPE based on both its EV and the hydrolysis

Research Article

precipition mass. Normally, as for the independent influence of EV of GICs or TiO_2 dosage on LOI, the bigger value means the better LOI due to the achieving thick residual char layer. As for the EG_{T1}, loading of precipition would decrease its EV. Therefore, there is an optimum precipition adsorbance or $TiCl_4$ dosage, and the value is 0.35 g/g of $TiCl_4$.

Base on the above experiment results, the feasible synthesis method of EG_{T1} is described as: mass ratio of TiCl₄ to EG is 0.35 g/g, dosage of NH₃·H₂O with a 25 wt% is controlled as 0.32 g/g, hydrolysis reaction maintains 2.0 h with continuous agitation at room temperature. After stewing 3.0 h, the solids are filtrated and dried at 100°C until it keeps a constant mass. The obtained EG_{T1} shows an EV of 390 mL/g at 800°C. *Characteristics of the Prepared GICs*

SEM Analysis

As a comparison, Figure 3 presents SEM morphology of the EG_{T1} and the referenced EG_{T2} taking from different angle. As showed in Figure 3a of the EG_{T1} , some white particles can be seen covering on the outside surface of EG cause by the hydrolysis precipitation reaction of TiCl₄, and the distribution presents uniform cracks caused by the magnetic stirring effect. It's relatively smooth for the EG_{T2} as presented in Figure 3c. As for the profile showed in Figure 3b and Figure 3d, they both show the layer structures just like natural graphite, but the layers distances are enlarged caused by the intercalation reaction, so they can show excellent dilatability.

Compared Figure 3a with Figure 3b of the EG_{T1} , it shows that white particles mainly cover on the EG outside surface, and no particle is found between the layers, which indicates the hydrolysis precipitation reaction mainly occurs on the outer surface of EG.

Figure 3: Outside Surface and Profile Mophologies of EG_{T1} (a), (b) and EG_{T2} (c), (d)

FTIR Analysis

Figure 4 shows FTIR spectrums of the prepared EG EG_{T1} and EG_{T2} . The three samples show the characteristic stretching vibrations absorption peaks of -OH (round 3440 - 3460 cm⁻¹) and S=O (round 1120 cm⁻¹) caused by intercalation of H₂SO₄/HSO₄⁻ (Shioyam and Fujii, 1987). At the same time, the peaks at about 1630 cm⁻¹ are the specific stretching vibration absorption of C=C. It's worth noting that the stretching vibration absorptions of Ti-O is observed at 619 cm⁻¹ and 466 cm⁻¹ in the spectrum of EG_{T1} and EG_{T2} (Weng *et al.*, 2008; Lu *et al.*, 2015).

Figure 4: The FTIR Spectra of EG, EG_{T1} and EG_{T2}

XRD Analysis

XRD analysis was carried out for natural graphite, the expansion products of EG_{T1} and EG_{T2} at 800°C. As shown in Figure 5, they all show the specific diffraction peaks of natural graphite round 26.6° and 54.8°. The spectrogram differences present that the 001 diffraction peak strength of the expansion product is weak, and new reflection peaks appear at the same time, which is in accordance with the characteristic peaks of rutile TiO₂ caused by the hydrolysis or assistant intercalation reaction of TiCl₄ (Weng *et al.*, 2008). Based on the results of SEM, FTIR and XRD, it can be suggested hydrolysis precipitation reaction between EG and TiCl₄ produces the EG_{T1}. The difference between the EG_{T1} and EG_{T2} is the hydrolysis product covering on the outside surface of EG, and it's in the graphene layers for EG_{T2}.

Application to the Flame Retardance of LLDPE

The combustion behavior of LLDPE loading with the prepared EG_{T1} was evaluated in LOI and vertical combustion UL-94 tests, and the results listed in Table 1 are contrasted with other FRs such as APP, EG, pure TiO₂, EG_{T2}, and three groups of binary-mixture of TiO₂ and EG, APP and EG_{T1}, APP and EG_{T2}. Pure LLDPE is very flammable, and the combustion companies serious melt-dropping. When mixed LLDPE with FRs at a total 30 wt% dosage, they can all improve the LOI value.

The efficiencies are compared between these FRs, and EG_{T1} shows the better flame retardancy for 70 LLDPE/30EG_{T1} than the others. It improves the LOI from 17.6% to 28.0%, and UL-94 level from the not detected (N.D.) to V-0. As for the addition of binary-mixture, the LOI and UL-94 level are all higher than the single FR system, which indicates there is synergistic effect between TiO₂ and EG, APP and EG_{T1}, APP and EG_{T2}. The combination makes the 70LLDPE/20EG_{T1}/10APP composite show the best LOI of 31.3%.

2**θ** /∘

Figure 5: XRD Analysis of Natural Graphite, Expansion Product of EG_{T1} and EG_{T2}

Table 1: The LOI Results of LLDPE Composites

L		
Specimens	LOI /%	Ul-94 Level
100LLDPE	17.6	N.D.
70LLDPE/30APP	19.9	N.D.
70LLDPE/30EG	25.0	V-1
70LLDPE/30TiO ₂	23.4	N.D.
70LLDPE/30EG _{T1}	28.0	V-0
70LLDPE/30EG _{T2}	26.8	V-0
70LLDPE/20EG _{T1} /10APP	31.3	V-0
70LLDPE/25.6EG/4.4 TiO ₂	26.6	V-1
70LLDPE/20EG _{T2} /10APP	30.4	V-0

Conclusion

The EG_{T1} was stepwise prepared with chemical oxidation and hydrolysis precipitation method. SEM, FTIR and XRD results confirmed the oxidation intercalation reaction and hydrolysis precipitation of TiCl₄. Compared EG_{T1} with the normal EG, TiO₂, EG_{T2} prepared with chemical oxidation intercalation method, binary-mixture of EG and TiO₂, it indicated better flame retardancy for LLDPE. There is synergistic effect between APP and EG_{T1}, the combination makes the 70LLDPE/20EG_{T1}/10APP composite show the best LOI of 31.3%.

Research Article

REFERENCES

Lai Q, Zhu SF, Liu GQ, Zou M and Li YF (2010). Preparation and characterization of TiO₂/expanded graphite. *Transactions of Tianjin University* **16**(2) 156-9.

Lin RN, Pang XY, Xu MY, Hu XL, Su X and Liu JH (2013). Study on the catalytic behaviors of expansible graphite in the synthesis of acetic ester and propionic ester. *Organic chemistry - An Indian Journal* 9(3) 92-6.

Lu MW, Wang F, Liao QL, Chen KR, Qin JF and Pan SQ (2015). FTIR spectra and thermal properties of TiO₂-doped iron phosphate glasses. *Journal of Molecular Structure* 1081 187-92.

Ma ZJ (1993). The preparation method and equipment for expandable graphite. CN 93105115.0.

Modesti M, Lorenzetti A, Simioni F and Camino G (2002). Expandable graphite as an intumescent flame retardant in polyisocyanurate polyurethane foams. *Polymer Degradation and Stability* 77(2) 195-202.

Mosurkal R, Samuelson LA, Smith KD, Westmoreland PR, Parmar VS, Yan FD, Kumar J and Watterson AC (2008). Nanocomposites of TiO₂ and siloxane copolymers as environmentally safe flame-retardant materials. *Journal of Macromolecular Science Part A-Pure and Applied Chemistry* **45**(11) 943-7.

Pang XY (2012). Catalytic behaviors of expansible graphite in the synthesis of butyl acetate. *E-Journal of Chemistry* **9**(4) 1816-22.

Pang XY and Sun SY (2014). Preparation and characteristics of expanded graphite loaded with ZnO. *International Journal of ChemTech Research* 6(5) 3137-45.

Pang XY, Tian Y and Weng MQ (2015). Preparation of expandable graphite with silicate assistant intercalation and its effect on flame retarding properties of ethylene vinyl acetate composites. *Polymer Composites* **36**(8) 1407-16.

Pang XY, Tian Y, Duan MW and Zhai M (2013). Preparation of low initial expansion temperature expandable graphite and its flame retardancy for LLDPE. *Central European Journal of Chemistry* **11**(6) 953-9.

Pang XY, You TT, Su YJ and Chen Y (2009). Preparation of expanded graphite loaded titanium oxide with titanium tetrachloride as intercalation reagent. *Chinese Non-Metallic Mines* **32**(5) 1-4.

Pang XY, Zhang LL, Xu LJ and Su YJ (2009). Study on the adsorbing characteristica of expanded graphite for benzene organic molecules. *Environmental Science: An India Journal* **4**(6) 502-6.

Ramanathan K, Avnir D and Modestov A (1997). Sol-Gel derived ormosil - exfoliated graphite- TiO_2 composite floating catalyst: Photodeposition of copper. *Chemistry of Materials* 9(11) 2533-40.

Shioyam H and Fujii R (1987). Electrochemical reactions of stage 1 sulfuric acid-Graphite intercalation compound. *Carbon* 25(6) 771-4.

Shornikova ON, Dunaev AV, Maksimova NV and Avdeev VV (2006). Synthesis and properties of ternary GIC with iron or copper chlorides. *Journal of Physics and Chemistry of Solids* 67(5) 1193-7.

Song KM, Li GS, Feng YL and Yan QY (1996). Preparation of low-sulfur expansible graphite by using mixing acid. *Journal of Inorganic Materials* 11(4) 749-52.

Song KM, Lu WY and Gao SY (1993). A method for the preparation of expandable graphite with low sulfur content. CN 93119757.0.

Toyoda M, Moriya K, Aizawa JI, Konno H and Inagaki M (2000). Sorption and recovery of heavy oils by using exfoliated graphite Part I: Maximum sorption capacity. *Desalination* **128**(3) 205-11.

Weng YJ, Qi F, Huang N, Wang J, Cheng JY and Leng YX (2008). Photochemical immobilization of bovine serum albumin on Ti–O and evaluations in vitro and in vivo. *Applied Surface Science* **255**(2) 489-93.

Xie RC and Qu BJ (2001). Synergistic effects of expandable graphite with some halogen-free flame retardants in polyolefin blends. *Polymer Degradation and Stability* **71**(3) 375-80.

Xu DM, Ding F, Hao JW and Du JX (2013). Preparation of modified expandable graphite and its flame retardant application in rigid polyurethane foam. *Chemical Journal of Chinese Universities-Chinese* 34(11) 2674-80.

Zhang QH, Gao L and Guo JK (2000). Preparation of nanosized TiO_2 powders from hydrolysis of $TiCl_4$. *Journal of Inorganic Materials* **15**(1) 21-5.

Zhang Y, Chen XL and Fang ZP (2013). Synergistic effects of expandable graphite and ammonium polyphosphate with a new carbon source derived from biomass in flame retardant ABS. *Journal of Applied Polymer Science* **128**(4) 2424-32.

Zhao HM, Pang XY and Lin RN (2016). Preparation of boric acid modified expandable graphite and its influence on polyethylene combustion characteristics. *Journal of the Chilean Chemical Society* **61**(1) 2767-71.

Zhou Y, Hao JW, Liu GS and Du JX (2013). Influencing mechanism of transition metal oxide on thermal decomposition of ammonium polyphosphate. *Chinese Journal of Inorganic Chemistry* 29(6) 1115-22.