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ABSTRACT  

A layer of couple-stress fluid heated from below in a porous medium is considered in the presence of 

uniform vertical magnetic field. Following the linearized stability theory and normal mode analysis, the 
paper through mathematical analysis of the governing equations of couple-stress fluid convection with a 

uniform vertical magnetic field in porous medium, for any combination of perfectly conducting free and 

rigid boundaries of infinite horizontal extension at the top and bottom of the fluid, established that the 

complex growth rate   of oscillatory perturbations, neutral or unstable, must lie inside a semi-circle 
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 , in the right half of a complex   -plane, Where R is the thermal 

Rayleigh number, F is the couple-stress parameter of the fluid, lP  is the medium permeability,   is the 

porosity of the porous medium, 1p is the thermal Prantl number and 2p  is the magnetic Prandtl number, 

which prescribes the upper limits to the complex growth rate of arbitrary oscillatory motions of growing 

amplitude in the couple-stress fluid heated from below in the presence of uniform vertical magnetic field 
in a porous medium. The result is important since the exact solutions of the problem investigated in 

closed form, are not obtainable for any arbitrary combinations of perfectly conducting dynamically free 

and rigid boundaries.  
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INTRODUCTION 
Stability of a dynamical system is closest to real life, in the sense that realization of a dynamical system 

depends upon its stability. Right from the conceptualizations of turbulence, instability of fluid flows is 
being regarded at its root. A detailed account of the theoretical and experimental study of the onset of 

thermal instability (Bénard Convection) in Newtonian fluids, under varying assumptions of 

hydrodynamics and hydromagnetics, has been given by Chandrasekhar (1981) and the Boussinesq 
approximation has been used throughout, which states that the density changes are disregarded in all other 

terms in the equation of motion, except in the external force term. The formation and derivation of the 

basic equations of a layer of fluid heated from below in a porous medium, using the Boussinesq 

approximation, has been given in a treatise by Joseph (1976). When a fluid permeates through an 
isotropic and homogeneous porous medium, the gross effect is represented by Darcy’s law. The study of 

layer of fluid heated from below in porous media is motivated both theoretically and by its practical 

applications in engineering. Among the applications in engineering disciplines one can name the food 
processing industry, the chemical processing industry, solidification and the centrifugal casting of metals. 

The development of geothermal power resources has increased general interest in the properties of 

convection in a porous medium. Stommel and Fedorov (1967) and Linden (1974) have remarked that the 
length scales characteristic of double-diffusive convecting layers in the ocean may be sufficiently large so 

that the Earth’s rotation might be important in their formation. Moreover, the rotation of the Earth distorts 

the boundaries of a hexagonal convection cell in a fluid through porous medium and this distortion plays 
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an important role in the extraction of energy in geothermal regions. The forced convection in a fluid 

saturated porous medium channel has been studied by Nield et al., (1996). An extensive and updated 

account of convection in porous media has been given by Nield and Bejan (1999). 
The effect of a magnetic field on the stability of such a flow is of interest in geophysics, particularly in the 

study of the earth’s core, where the earth’s mantle, which consists of conducting fluid, behaves like a 

porous medium that can become conductively unstable as result of differential diffusion. Another 
application of the results of flow through a porous medium in the presence of magnetic field is in the 

study of the stability of convective geothermal flow. A good account of the effect of rotation and 

magnetic field on the layer of fluid heated from below has been given in a treatise by Chandrasekhar 

(1981).  
MHD finds vital applications in MHD generators, MHD flow-meters and pumps for pumping liquid 

metals in metallurgy, geophysics, MHD couplers and bearings and physiological processes such magnetic 

therapy. With the growing importance of non-Newtonian fluids in modern technology and industries, 
investigations of such fluids are desirable. The presence of small amounts of additives in a lubricant can 

improve bearing performance by increasing the lubricant viscosity and thus producing an increase in the 

load capacity. These additives in a lubricant also reduce the coefficient of friction and increase the 
temperature range in which the bearing can operate. 

Darcy’s law governs the flow of a Newtonian fluid through an isotropic and homogeneous porous 

medium. However, to be mathematically compatible and physically consistent with the Navier-Stokes 

equations, Brinkman (1949) heuristically proposed the introduction of the term 


 q2




, (now known as 

Brinkman term) in addition to the Darcian term 










 q

k1


. But the main effect is through the Darcian 

term. Brinkman term contributes very little effect for flow through a porous medium. Therefore, Darcy’s 

law is proposed heuristically to govern the flow of this non-Newtonian couple-stress fluid through porous 

medium. A number of theories of the micro continuum have been postulated and applied (Stokes (1966); 
Lai et al., (1978); Walicka (1994)). The theory due to Stokes (1966) allows for polar effects such as the 

presence of couple stresses and body couples. Stokes’s (1966) theory has been applied to the study of 

some simple lubrication problems (see e.g. Sinha et al., (1981); Bujurke and Jayaraman (1982); Lin 
(1996)). According to the theory of Stokes (1966), couple-stresses are found to appear in noticeable 

magnitudes in fluids with very large molecules. Since the long chain hyaluronic acid molecules are found 

as additives in synovial fluid, Walicki and Walicka (1999) modeled synovial fluid as couple stress fluid in 
human joints. The study is motivated by a model of synovial fluid. The synovial fluid is natural lubricant 

of joints of the vertebrates. The detailed description of the joints lubrication has very important practical 

implications, practically all diseases of joints are caused by or connected with a malfunction of the 

lubrication. The external efficiency of the physiological joint lubrication is caused by more mechanisms. 
The synovial fluid is caused by the content of the hyaluronic acid, a fluid of high viscosity, near to a gel. 

A layer of such fluid heated from below in a porous medium under the action of magnetic field and 

rotation may find applications in physiological processes. MHD finds applications in physiological 
processes such as magnetic therapy, rotation and heating may find applications in physiotherapy. The use 

of magnetic field is being made for the clinical purposes in detection and cure of certain diseases with the 

help of magnetic field devices. 
Sharma and Thakur (2000) have studied the thermal convection in couple-stress fluid in porous medium 

in hydromagnetics. Sharma and Sharma (2001) have studied the couple-stress fluid heated from below in 

porous medium. Kumar and Kumar (2011) have studied the combined effect of dust particles, magnetic 

field and rotation on couple-stress fluid heated from below and for the case of stationary convection, 
found that dust particles have destabilizing effect on the system, where as the rotation is found to have 

stabilizing effect on the system, however couple-stress and magnetic field are found to have both 



International Journal of Applied Engineering and Technology ISSN: 2277-212X (Online) 

An Online International Journal Available at http://www.cibtech.org/jet.htm  

2012 Vol. 2 (2) April-June, pp.180-189/Banyal 

Research Article 

182 

 

 

stabilizing and destabilizing effects under certain conditions. Sunil et al., (2011) have studied the global 

stability for thermal convection in a couple-stress fluid heated from below and found couple-stress fluids 

are thermally more stable than the ordinary viscous fluids. 
Pellow and Southwell (1940) proved the validity of PES for the classical Rayleigh-Bénard convection 

problem. Banerjee et al., (1981) gave a new scheme for combining the governing equations of 

thermohaline convection, which is shown to lead to the bounds for the complex growth rate of the 
arbitrary oscillatory perturbations, neutral or unstable for all combinations of dynamically rigid or free 

boundaries and, Banerjee and Banerjee (1984) established a criterion on characterization of non-

oscillatory motions in hydrodynamics which was further extended by Gupta et al., (1986). However no 

such result existed for non-Newtonian fluid configurations, in general and for couple-stress fluid 
configurations, in particular. Banyal (2011) have characterized the non-oscillatory motions in couple-

stress fluid.  

Keeping in mind the importance of couple-stress fluids and magnetic field in porous media, as stated 
above,, the present paper is an attempt to prescribe the upper limits to the complex growth rate of 

arbitrary oscillatory motions of growing amplitude, in a layer of incompressible couple-stress fluid in a 

porous medium heated from below, in the presence of uniform vertical magnetic field, opposite to force 
field of gravity, when the bounding surfaces are of infinite horizontal extension, at the top and bottom of 

the fluid and are perfectly conducting with any combination of dynamically free and rigid boundaries. 

The result is important since the exact solutions of the problem investigated in closed form, are not 

obtainable, for any arbitrary combination of perfectly conducting dynamically free and rigid boundaries.  
 

MATERIALS AND METHODS 

Formulation Of The Problem And Perturbation Equations 
Here we consider an infinite, horizontal, incompressible electrically conducting couple-stress fluid layer, 

of thickness d, heated from below so that, the temperature and density at the bottom surface z = 0 are 0T  

and 0 , at the upper surface z = d are dT  and d  respectively and that a uniform adverse temperature 

gradient 









dz

dT
  is maintained. The fluid is acted upon by a uniform vertical magnetic 

field  HH ,0,0


. This fluid layer is flowing through an isotropic and homogeneous porous medium of 

porosity  and of medium permeability 1k . 

Let  , p, T, , e and  wvuq ,,


 denote respectively the fluid density, pressure, temperature, resistivity, 

magnetic permeability and filter velocity of the fluid, respectively Then the momentum balance, mass 

balance and energy balance equation of couple-stress fluid and Maxwell’s equations through porous 

medium, governing the flow of couple-stress fluid in the presence of uniform vertical magnetic field 
(Stokes(1955); Joseph (1976); Chandrasekhar (1981)) are given by 

































































q

k
g

p
qq

t

q

o

2

0

'

10

1
1.

11











,)(

4



 HH
o

e




 (1) 

0. 


q ,   (2) 

 

TTq
dt

dT
E 2).( 



 , (3) 



International Journal of Applied Engineering and Technology ISSN: 2277-212X (Online) 

An Online International Journal Available at http://www.cibtech.org/jet.htm  

2012 Vol. 2 (2) April-June, pp.180-189/Banyal 

Research Article 

183 

 

 

0. 


H , (4) 




 HqH
dt

Hd 2).(  , (5) 

Where 
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 , stands for the convective derivatives. Here 
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 , is a constant, while s , sc and 0 , vc , stands for the density and heat 

capacity of the solid (porous matrix) material and the fluid, respectively,   is the medium porosity 

and ),,( zyxr


. 

The equation of state is 

  00 1 TT   , (6) 

Where the suffix zero refer to the values at the reference level z = 0. Here  gg 


,0,0  is acceleration due 

to gravity and   is the coefficient of thermal expansion. In writing the equation (1), we made use of the 

Boussinesq approximation, which states that the density variations are ignored in all terms in the equation 

of motion except the external force term. The kinematic viscosity , couple-stress viscosity 
' , 

magnetic permeability e , thermal diffusivity   and electrical resistivity   and the coefficient of 

thermal expansion   are all assumed to be constants. 

The basic motionless solution is 

 0,0,0


q , )1(0 z  , p=p(z), 0TzT   , (7) 

Here we use the linearized stability theory and the normal mode analysis method. Assume small 

perturbations around the basic solution and let  , p ,  ,  wvuq ,,


 and  zyx hhhh ,,


 denote 

respectively the perturbations in density  , pressure p, temperature T, velocity )0,0,0(


q and the magnetic 

field  HH ,0,0


. The change in density , caused mainly by the perturbation   in temperature, is 

given by 

    000 1  TT , i.e.  0 . (8) 

Then the linearized perturbation equations of the couple-sress fluid reduces to 
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h , (12) 

















hqH
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h 2.  . (13) 

Normal Mode Analysis 
Analyzing the disturbances into two-dimensional waves and considering disturbances characterized by a 

particular wave number, we assume that the Perturbation quantities are of the form 

      )(,,,, , zKzzWhw z  exp  ntyikxik yx  , (14) 

Where yx kk ,  are the wave numbers along the x- and y-directions, respectively,  2
1

22

yx kkk  , is the 

resultant wave number, n is the growth rate which is, in general, a complex constant and, )(),( zzW   

and )(zK  are the functions of z only. 

Using (14), equations (9)-(13), Within the framework of Boussinesq approximations, in the non-

dimensional form transform to 
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And 
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Where we have introduced new coordinates  ',',' zyx  = (x/d, y/d, z/d) in new units of length d and 

'/ dzdD  . For convenience, the dashes are dropped hereafter. Also we have substituted 
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1p , is the thermal Prandtl number; 




2p , is the magnetic Prandtl 

number; 
2

1

d

k
Pl   is the dimensionless medium permeability, 
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F  , is the dimensionless 

couple-stress viscosity parameter; 


 4dg
R  , is the thermal Rayleigh number and 
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the Chandrasekhar number. Also we have Substituted WW , 
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and dDD   and dropped    for convenience. 

Now consider the case for any combination of the horizontal boundaries as, rigid-rigid or rigid-free or 
free-rigid or free-free at z=0 and z=1, as the case may be and are perfectly conducting. The boundaries are 

maintained at constant temperature, thus the perturbations in the temperature are zero at the boundaries. 

The appropriate boundary conditions with respect to which equations (15)-(17), must possess a solution 
are 

W = 0= , on both the horizontal boundaries, (18) 

DW=0, on a rigid boundary, (19)  

02 WD , on a dynamically free boundary, (20) 

K = 0, on both the boundaries as the regions outside the fluid  
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are perfectly conducting, (21) 

Equations (15)-(17) and appropriately adequate boundary conditions from (18)-(21), pose an eigenvalue 

problem for   and we wish to characterize i , when 0r . 

Mathematical Analysis 
We prove the following theorems: 

Theorem 1: If R  0 , F  0, Q 0, 0r  and 0i  then the necessary condition for the existence of 

non-trivial solution  KW ,,  of equations (15) - (17) and the boundary conditions (18), (21) and any 

combination of (19) and (20) is that 
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Proof: Multiplying equation (15) by 
W  (the complex conjugate of W) throughout and integrating 

The resulting equation over the vertical range of z, we get 
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Taking complex conjugate on both sides of equation (17), we get 

    WEpaD 1
22

, (23) 

Therefore, using (23), we get  
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22 dzEpaDdzW  , (24) 

Also taking complex conjugate on both sides of equation (16), we get 

    DWKpaD 2
22 , (25) 

Therefore, using (25) and using boundary condition (18), we get  
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Substituting (24) and (26) in the right hand side of equation (22), we get 
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Integrating the terms on both sides of equation (27) for an appropriate number of times by making use of 

the appropriate boundary conditions (18) - (21), we get  
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And equating the real and imaginary parts on both sides of equation (28) and cancelling )0(i  

throughout from imaginary part, we get 
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Equation (30) implies that,  

   

1

0

1

0

222

2

2

1

2 dzKaDKQpdzEpRa , (31) 

Is negative definite and also,  
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We first note that sinceW ,  and K satisfy )1(0)0( WW  , )1(0)0(   and )1(0)0( KK   

in addition to satisfying to governing equations and hence we have from the Rayleigh-Ritz inequality 
Schlutz (1973)  
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And Banerjee et al., (1992) have proved that,  
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Further, multiplying equation (17) and its complex conjugate (23) and integrating by parts each term on 
right hand side of the resulting equation for an appropriate number of times and making use of boundary 

conditions on   namely )1(0)0(   along with (22), we get 
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Since 0r , 0i  therefore the equation (34) gives, 
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It is easily seen upon using the boundary conditions (18) that 
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(Utilizing Cauchy-Schwartz-inequality) 

Upon utilizing the inequality (35) and (36), inequality (37) gives 
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And this completes the proof of the theorem. 

 

CONCLUSIONS 

The inequality (40) for 0r  and 0i , can be written as 
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The essential content of the theorem, from the point of view of linear stability theory is that for the 

configuration of couple-stress fluid of infinite horizontal extension heated form below, having top and 
bottom bounding surfaces are of infinite horizontal extension, at the top and bottom of the fluid and are 

perfectly conducting with any arbitrary combination of dynamically free and rigid boundaries, in the 

presence of uniform vertical magnetic field parallel to the force field of gravity, the complex growth rate 
of an arbitrary oscillatory motions of growing amplitude, lies inside a semi-circle in the right half of the 

r i  - plane whose Centre is at the origin and radius is equal to
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, Where R is 

the thermal Rayleigh number, F is the couple-stress parameter of the fluid, lP  is the medium 
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permeability,   is the porosity of the porous medium, 1p is the thermal Prandtl number and 2p  is the 

magnetic Prandtl number and it provided an important improvement in the domain of bounds of 

perturbation to Banyal and Khanna (2012). The result is important since the exact solutions of the 
problem investigated in closed form, are not obtainable, for any arbitrary combinations of perfectly 

conducting dynamically free and rigid boundaries.  
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