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ABSTRACT  

The influence of the gravity on the propagation of Rayleigh waves in a prestressed inhomogeneous, 

orthotropic elastic solid medium has been discussed. The method of variable of separation is used to find 

the frequency equations of the surface waves. The obtained dispersion equations are in agreement with 

the classical results when gravity, non-homogeneity and initial stress are neglected. 
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INTRODUCTION 

The theory of elasticity is an approximation to the stress-strain behavior of real materials. An ideal elastic 

material regains its original configuration on the removal of deforming force. Therefore an ideal ‘‘elastic 

wave’’ is that wave which propagates through a material in such a way that the particles oscillates about 

their mean positions without causing any change. The earth has a layered structure, and this exerts a 

significant influence on the propagation of elastic waves. The simplest cases of influence exerted on the 

propagation of seismic waves by a single plane boundary which separates two half-spaces with different 

properties, and by two parallel plane boundaries forming a layer. Earth is being treated as an elastic body 

in which three types of waves can occur. 

1. Dilatational and equivoluminal waves in the interior of the earth.  

2. In the neighborhood of its surface known as Rayleigh waves (1885). 

3. Third type of waves occurs near the surface of contact of two layers of the earth known as love waves 

(1944). The Rayleigh waves are observed far from the disturbance source near the surface. Since the 

energy carried by these waves is concentrated over the surface, its dissipation is slower than the 

dilatational and equivoluminal waves where the energy is dissipated over the volume of the disturbed 

region. Therefore, during earth quakes for an observer remote from the source of disturbance, the 

Rayleigh waves represent the greatest danger. In the case of Love waves, the energy is concentrated near 

the interface; hence they are dissipated more slowly. Rayleigh waves have been well recognized in the 

study of earthquake waves, seismology, geophysics and geodynamics. A large amount of literature is to 

be found in the standard books of (Bullen, 1965; Ewing et al., 1957; Stoneley, 1924 and Jeffreys, 1959).  

Haskell (1953) studied the dispersion of surface waves in multilayered media. Goda (1992) discussed the 

effect of inhomogeneity and anisotropy on Stoneley waves. Biot (1964) studied the influence of gravity 

on Rayleigh waves, assuming the force of gravity to create a type of initial stress of hydrostatic nature 

and the medium to be incompressible. Taking into account, the effect of initial stresses and using Biot’s 

theory of incremental deformations, Jones (1965) discussed many problems of elastic waves and 

vibrations under the influence of gravity field. Sengupta and Acharya (1979) also studied the influence of 

gravity on the propagation of waves in a thermoelastic layer. Brunelle (1973) considered the surface 

wave propagation under initial tension of compression. Abd-Alla et al., (1996) analyzed the Rayleigh 

waves in an orthotropic thermoelastic medium under gravity field and initial stress. Recently, various 

studies on propagation of surface waves such as  Love waves in a non-homogeneous elastic media, 

Rayleigh waves in a non-homogeneous granular media, Stoneley, Rayleigh and Love waves in 
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viscoelastic media, Love Waves in a non-homogeneous orthotropic layer under compression ‘P’ 

overlying semi-infinite non-homogeneous medium were studied by Kakar et al., (2012-2013). 

In the present study, the influence of gravity and initial stress on the propagation of Rayleigh type waves 

in a non-homogeneous, orthotropic elastic solid medium has been discussed. The Dispersion equation so 

obtained is in well agreement with the corresponding classical results. 

 

FORMULATION OF THE PROBLEM 

Let us consider an orthotropic, non-homogeneous elastic solid under an initial compression P 

along x-direction further it is also under the influence of gravity. Here we consider Oxyz 

Cartesian coordinates system where O be any point on the plane boundary and Oz be normal to 

the medium and Rayleigh wave propagation is taken in the +ve direction of x-axis. It is also 

assumed that at a great distance from center of disturbance, the wave propagation is two 

dimensional and is polarized in (x, z) plane. So displacement components along x and z 

directions. i.e. u and w are non-zero while v = 0. 

Also it is assumed that wave is surface wave as the disturbance is extensively confined to the 

boundary. Let g be the acceleration due to gravity and be the density of the material medium. 

Here states of initial stresses are given by 

  
;

0 ;

ij i j

i j

   


  
 , where i, j = 1, 2, 3  (1) 

Further  is a function of z  

equation of equilibrium of initial compression are 

                          
x




 = 0 =

y




,   (2) 

           
z




– g  = 0. 

 

SOLUTION OF PROBLEM  

Considering eq (1) and eq (2) and conditions for compressibility, the dynamical equations in 

three dimensions of an elastic medium under initial compression and gravity are given by 


11, x + 

12, y + 
13, z + P (wz,y – wy, z) – g u

3, x = u,tt,      (3) 


12, x + 

22, y + 
23, z – Pwz,x = v,tt,       (4) 


13, x + 

23, y + 
33,z – Pwy,x + g u

1,x = w,tt ,      (5) 

Where u, v, w are displacement components in x, y and z direction and wx, wy, wz are rotational 

components and are given by 

 wx =  
1

2
 (w,y – v,z) ; wy = 

1

2
 (u,z – w,x) 

 wz =  
1

2
 (v,x – u, y).      (6)  

Further dynamical eqs in (x, z) directions are given by  


11, x + 

13, z – Pwy, z – g u
3, x = u,tt,                                                    


13, x + 

33,z – Pwy,x + g u
1,x = w,tt,       (7) 

Where stress components are given by 
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11

 = (C
11

+ P) u
1,x + (C

13
 + P) u

3,z , 

 
33

 = C
31

 u
1, x + C

33
 u

3,z , 

 
13

 = C
44

 (u
1,z + u

3,x),  (8)  

Where Cij are elastic constants. 

Let us take the assumption that C
44

 = 
1

2
(C

11
 – C

13
).  

Substituting equation (6) and equation (8) in equation (7); we have 

(C
11

 + P) (2u
1, xx + u

1, zz + u
3, xz) + C

13 (u3, xz – u
1, zz) + (u

1, z + u
3, x)         

(C
11

 – C
13

), z + 2u
1, x (C

11
 + P), x + 2u

3,z (C
13

+ P),x – 2g u
3,x = 2u

1,tt,          (9)       

C
11

 (u
1, xz + u

3, xx) + (C
13

 +P) (u
1, xz – u

3, xx) + 2 C
33

 u
3, zz  

+ 2g u
1, x + (u

1,z + u
3, x) (C

11
 – C

13
), x + u

1, x C
13, z + u

3,z C
33, z = 2u

3,tt . (10) 

Now we assume the non-homogeneity for the elastic half space, density and compression are 

given by 

Cij = ij emz, = 
0
 emz, P = P

0
 emz,         (11) 

Where i,j, 0
, P

0 
and m are constants. 

Substituting eq (11) in eqs (9) and (10) we get 

emz (
11

 + P
0
) (2u

1, xx + u
1, zz + u

3, xz) + 
13 (u3, xz – u

1, zz) emz                 (12) 

+ (u
1, z + u

3, x) (
11

 – 
13

) m emz – 2
0
 g u

3,x emz = 2
0
u

1,tt ,                                                                   


11

 (u
1, xz+u

3, xx) + (
13

+2P
0
) (u

1, xz) – (
13

+2P
0
) u

3, xx + 2
33

 u
3,zz+2

0
g u

1,x  

+ 2 
13

 m u
1,x + 2

33
 mu

3, z = 2u
3,tt . (13) 

To investigate the surface wave propagation along Ox, we introduce displacement potentials in 

terms of displacements components are given by 

u = , x – , z; w = , z + , x  (14) 

Introducing eq (14) in eqs (12) and (13) we get 

2 (
11

 + P
0
) 

2
 – 2

0
 g , x + m (

11
 – 

13
) (2, z + , x) = 2

0
 ,tt , (15) 

         (
11

 + P
0
 – 

13
) 

2
+ 2

0 
g, x - m (

11
 – 

13
) , z = 2

0
 ,tt , (16) 

and 


11 , xx + 

33 ,zz – 
0
g ,x– 2

13
 m ,x + 2

33
 m,z = 2

0
,tt , (17) 

       (
11

 – 
13

 – 2P
0
) ,xx + (2 

33
 – 

13 – 
11 – 2P

0
) ,zz + (2 

0
g + 2

13
 m) ,x 

                                                                   + 2
33

 m ,z = 2
0
 ,tt ,                  (18) 

Where 
2 
=

2 2

2 2x z

 

 
 . 

Since the velocity of waves are different in x and z direction. Now eq (15) and (16) represent the 

compressive wave along x and z-direction while eq (17) and (18) represents the shear waves 

along these directions. Since we consider the propagation of Rayleigh waves in x-direction  

we consider only equation (15) and equation (18). 

To solve equation (15) and equation (18) we introduce 

 (x, y, z) = f (z)
 i x ct

e
 

 , 
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and    (x, y, z) = h(z) 
 i x ct

e
 

 . (19) 

putting eq (19) in eq (15) and eq (18) we get 

f,zz +  Af,z + Bf + Ch = 0, (20) 

h,zz + A'h,z + B'h + C'f = 0, (21) 

Where  

A =
 11 13

11 0

m

P

 






, B = 

 2 2

0 11 0

11 0

c P

P

  



 


 , C = 

 

 
0 11 13

11 0

2

2

g m i

P

   



    


,             

A'= 33

33 11 13 0

2

2 2

m

P



    
, B'=

 2 2

0 11 13 0

33 11 13 0

2 2

2 2

c P

P

   

  

  

  
, 

C'=
 0 13

33 11 13 0

2 2

2 2

g m i

P

  

  



  
. (22) 

Now eq (20) and eq (21) have exponential solution in order that f (z) and h (z) describe surface 

waves and also they varnish as z hence eq (15) takes the form, 

        (x, z, t) =  1 2

1 2

i x ctz zC e C e e
      , 

and  (x, z, t) =  1 2

3 4

i x ctz zC e C e e
      , (23) 

Where C
1
, C

2
, C

3
, C

4
 are arbitrary constants and 

1
, 

2
 are the roots of the equation 

 11 134 333

11 0 33 11 13 0

2

2 2

m m

P P

  
 

   

 
  

    
 

+ 
2 2

2 20 11 13 0 0 11 0

33 11 13 0 11 0

2 2

2 2

c P c P

P P

    
 

   

     
 

    
 

+ 
     

   

2 2

11 33 0 11 13 0 0 11 0 332

11 0 33 11 13 0

2 2 2

2 2

c P c P
m

P P

       
 

   

       
 

     

 

+
   

  

4 2 2

0 11 0 0 11 13 0

11 0 33 11 13 0

2 2

2 2

c P c P

P P

     

   

     


   

   

    

   
11 13 0 0 132

11 0 33 11 13 0

2 2 2

2 2 2

m g g m

P P

    


   

  
 

    

= 0. (24) 

Here we consider only real roots of eq (24). Now the constants C
1
, C

2
 and C

3
, C

4
 are related by 

the eqs (20) and eq (21). 

By equating the co-efficients of 1ze 
and 2 ze   to zero, eq (20) gives, 

C
3
 = 

1
 C

1
, C

4
 = 

2
 C

2
,                                                                                        (25)  

Where j = 
 

2 2

11 0 11 13 0 11 0

11 13 0

2 [(   P ) –  m (  – )  (  c  –  – P )]

2

j ji

m g

      

   

 

   

  ; j = 1, 2. (26) 
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BOUNDARY CONDITIONS  

The plane z = 0 is free from stresses i.e. 
13

 = 
33

 = 0 at z = 0, (27) 

Where  
13

  = 
1

2
(

11
 – 

13
) [2,xz – ,zz + ,xx] emz , (28) 

 
33

  = 
31

 [, xx – ,xz] emz + 
33

[,zz + ,zx] emz. (29) 

Introducing eq (28) and (29) in eq (27) we have 

C
1 

(2
1
 i + 

1


1


 + 




1
) + C

2
 [2 

2
 i+ 

2


2


 + 


 

2
] = 0, (30) 

C
1
 [–

2
 

13
 + 

1


 

33
 – 

1


1
i (

33
 – 

13
)] +C

2
 [–




13
 + 

2


 

33
 –

1
 

1
i (

33
 – 13)] = 0.       (31) 

Eliminating C
1
 and C

2
 from eq (30) and eq (31); we have 

[2
1
 i + 

1


1


 + 




1
] [–


13

 + 
2


 

33
 –

1
 

1
i (

33
 – 13)] 

– [2 
2
 i+ 

2


2


 + 


 

2
] [–

2
 

13
 + 

1


 

33
 – 

1


1
i (

33
 – 

13
)] = 0,  (32) 

Where j (j = 1, 2) are given by equation (26) and j (j = 1, 2) are roots of eq. (24). 

Now eq (32) gives the wave velocity equation for Rayleigh waves in a non-homogeneous elastic 

half space of orthotropic material under the initial compression and influence of gravity. 

From eq (32), it follows that Rayleigh waves depends on gravity, initial compression, non-

homogeneous character of the medium and nature of the material.  

From equation (32),we conclude that if is large i.e. length of wave i.e. 
2


 is small then 

gravity and compression have small effects on Rayleigh waves in non-homogeneous orthotropic 

half space and if is small i.e. 
2


 is large then gravity and compression plays a vital role for 

finding out the wave velocity c. 

When the medium is isotropic, eq (32) becomes 

[2
1
 i + 

1


1


 + 




1
] [

1


 (

2


 - 


) + 2

2


 (1 – i

2


2
)] 

– [2 
2
 i+ 

2


2


 + 


 

2
] [

1


 (

1


 - 


) + 2

2


 (1 – i

1


1
)] = 0, (33)  

Where 
1


 =

2 P 



 
, 

2


 =

2P




, (,  are Lame’s constants). (34) 

Eq (34) determines the Rayleigh waves in a non-homogeneous isotropic elastic solid under the 

influence of gravity and compression. 

When initial compression is absent i.e. P
0
 = 0, then equation (33) reduces to, 

[2
1
 i + 

1


1


 + 




1
] [

1


 (

2


 - 


) + 2

2


 (1 – i

2


2
)] 

– [2 
2
 i+ 

2


2


 + 


 

2
] [

1


 (

1


 - 


) + 2

2


 (1 – i

1


1
)] = 0, (35) 

Where 
1


 =

2 




 , 

2


 =




. 

Eq (35) determines the Rayleigh surface waves in a non-homogeneous isotropic elastic solid 

under the influence of gravity which is similar to corresponding classical result given by Das et 

al., 

When non-homogeneity of the material is absent, we get same dispersion eq. as (32) with 
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j = 

2 2

11 0 0 11 0

0

[(   P )  (  c  –  – P )]ji

g

   



  
  ; j = 1, 2, 

Where 
1
, 

2
 are the roots of the equation 

4 +
2 2

2 20 11 13 0 0 11 0

33 11 13 0 11 0

2 2

2 2

c P c P

P P

    
 

   

     
 

    
   

            + 
   

   

4 2 2 2 2 2

0 11 0 0 11 13 0 0

0 11 33 11 13 0

2 2 2

2 2

c P c P g

P P

       

   

      
 

     

= 0.    (36) 

When gravity field is absent, we get same velocity eq. for Rayleigh waves in non-homogeneous 

elastic solid under initial compression as eq (32) with 

j = 
 

2 2

11 0 11 13 0 11 0

11 13

2 [(   P ) –  m (  – )  (  c  –  – P )]j ji

m

      

  

 

  

  ; j = 1, 2, 

Where 
1
, 

2
 are roots of the equation 

 11 134 333

11 0 33 11 13 0

2

2 2

m m

P P

  
 

   

 
  

    
 

+
2 2

2 20 11 13 0 0 11 0

33 11 13 0 11 0

2 2

2 2

c P c P

P P

    
 

   

     
 

    
 

+ 
     

   

2 2

11 33 0 11 13 0 0 11 0 332

11 0 33 11 13 0

2 2 2

2 2

c P c P
m

P P

       
 

   

       
 

     

 

+
   

  

4 2 2

0 11 0 0 11 13 0

11 0 33 11 13 0

2 2

2 2

c P c P

P P

     

   

     


   

   

    

   
11 13 132

11 0 33 11 13 02 2

m m

P P

  


   


 

    

= 0.   (37) 

When medium is initially unstressed i.e. P
0
 = 0, 

We get, velocity equation for Rayleigh waves is similar to equation (32) with 

j = 
 

2 2

11 11 13 0 11

11 13 0

2 [( –  m (  – )  (  c  – )]

2

j ji

m g

      

   



   

  ; j = 1, 2, 

Where 
1
, 

2
 are roots of the equation 

 11 134 333

11 33 11 13

2

2

m m  
 

   

 
  

  
 

+ 
2 2

2 20 11 13 0 11

33 11 13 11

2

2

c c    
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+ 
     

  

2 2

11 33 0 11 13 0 11 332

11 33 11 13

2 2

2

c c
m

       
 

   

     
 

   

 

+
   

  

4 2 2

0 11 0 11 13

11 33 11 13

2

2

c c     

   

   


 

    

   
11 13 0 0 132

11 33 11 13

2 2 2

2 2

m g g m    


   

  
 

  

=0.   (38) 

When the non-homogeneity of the material and gravity field are absent further medium is 

initially unstressed and isotropic, eq (32) reduces to, 

2 2

2 2

1 2

4 1 1
c c

K K

   
    

   
=

2
2

2

2

2
c

K

 
 

 
,  (39) 

Where 
1


 =

2 




 , 

2


 =




. 

Equation (39) is similar to the equation given by Rayleigh. 
 

DISCUSSION AND CONCLUSION 

Equation (32) represents the wave velocity equation for the Rayleigh waves in a non-homogeneous, 

orthotropic elastic solid medium under the influence of gravity and initial compression. It depends upon 

the wave number and confirming that waves are dispersive. Moreover, the dispersion equation contains 

terms involving gravity, initial compression and non-homogeneity, so the phase velocity ‘c’ not only 

depends upon the gravity field and initial compression but also on the non-homogeneity of the material 

medium. 

The explicit solutions of this wave velocity equation cannot be determined by analytical methods. 

However, these equations can be solved with the help of numerical method, by a suitable choice of 

physical parameters involved in medium. 

 

ACKNOWLEDGEMENT 

The authors are thankful to the referees for their valuable comments. 

 

REFERENCES   

Rayleigh L (1885). On Waves Propagated along the Plane Surface of an Elastic Solid. Proceedings of 

the London Mathematical Society 4-11.  

Love AEH (1944). Mathematical Theory of Elasticity 4
th
 Edition, Dover Publications. 

Bullen KE (1965). An Introduction to the Theory of Seismology, Cambridge University Press London 

85-99. 

Ewing WM, Jardetzky WS and Press F (1957). Elastic waves in layered media, McGraw Hill 348–

350. 

Stoneley R (1924). The elastic waves at the surface of separation of two solids. Proceedings of the Royal 

Society London A (106) 416–420. 

Jeffreys H (1959). The Earth 4
th
 Edition, Cambridge University Press, London. 

Haskell NA (1953). The Dispersion of Surface Waves in Multilayered Media. Bulletin of the 

Seismological Society of America 43 17-34.  

Goda MA (1992). The Effect of Inhomogeneity and Anisotropy on Stoneley waves. Acta Mechanica  

93(1-4) 89-98. 

Biot MA (1965). Mechanics of Incremental Deformations, J Willy. 

Jones JP (1964). Wave Propagation in a Two Layered Medium. Journal of Applied Mechanics 213-222.  



International Journal of Applied Engineering and Technology ISSN: 2277-212X (Online) 

An Online International Journal Available at http://www.cibtech.org/jet.htm  

2012 Vol. 2 (4) October-December, pp.9-16/Rajneesh Kakar 

Research Article 

16 

 

Sengupta PR and Acharya D (1979). The Influence of Gravity on the Propagation of Waves in a 

Thermoelastic Layer. Rev. Romm. Sci. Techmol. Mech. Appl., Tome 24 395-406. 

Brunelle EJ (1973). Surface Wave Propagation under Initial Tension or Compression. Bulletin of the 

Seismological Society of America 63 1895-1899.  

Abd-Alla AM and Ahmed SM (1996). Rayleigh Waves in an Orthotropic Thermo elastic Medium under 

Gravity Field and Initial Stress. Journal of Earth Moon and Planets 75 185-197. 

Kakar R and Kakar S (2012). Propagation of Love Waves in a Non-homogeneous Elastic Media. 

Journal of Academia and Industrial Research 1(6) 323-328. 

Kakar R and Kakar S (2012). Rayleigh Waves in a Non-homogeneous Granular Media. Journal of 

Chemical Biological and Physical Sciences B 3(1) 464-478. 

Kakar R and Kakar S (2012). Propagation of Stoneley Rayleigh and Love Waves in Viscoelastic Media 

of Higher Order. International Journal of Current Research 4(12) 249-257. 

Kakar R and Gupta KC (2012). Propagation of Love Waves in a Non-homogeneous Orthotropic Layer 

under Compression ‘P’ Overlying Semi-infinite Non-homogeneous Medium. Global Journal of Pure and 

Applied Mathematics 8(4) 483-494. 


