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ABSTRACT 
An analytical approach to two-dimensional non-reactive solute transport in finite homogeneous porous 

formations is compared with the numerical result obtained from two-level explicit finite difference 

method. The analytical solution is derived with time-dependent point-source contamination expressed as 

logistic sigmoid functions for three different types of velocity expressions. First, the flow velocity in the 

aquifer is asymptotic in nature, second, the flow velocity is an exponentially decreasing function and third 

the flow velocity is sigmoid expression. These velocity expressions represent the groundwater flow in 

complex nature of geological formation. The geological formation is initially polluted. This may be 

represented by a mathematical expression i.e., exponentially decreasing function of space. A particular 

case is derived which validates the solution, and the analytical solution is illustrated using suitable input 

parameters.  
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NOTATIONS 

ic   Initial background solute concentration 3ML    

   Decay parameter 1L    

x   Space variable along x -axis  L  

y   Space variable along y -axis  L  

c   Contaminant concentration in the aquifer at any time 3ML    

t   Time variable  T  

u   Groundwater velocity component along x -axis 1LT     

v   Groundwater velocity component along y -axis 1LT     

xD   Dispersion coefficient along x -axis 2 1L T     

yD   Dispersion coefficient along y -axis  

,xy yxD D  Off diagonal dispersion components 2 1L T     

0u   Initial seepage velocity along x -axis 1LT     

0v   Initial seepage velocity along y -axis 2 1L T     
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f   Temporally dependent function 

a   Dispersivity  L  

0xD   Initial dispersion coefficient along x -axis 2 1L T     

0yD   Initial dispersion coefficient along y -axis 2 1L T     

0c   Solute concentration at the source 3ML    

q   Contaminant decay rate coefficient 1T     

*T   New time variable  T  

m   Flow resistance coefficient 1T     

C   Non-dimensional solute concentration in the aquifer  

X   Non-dimensional space variable along x -axis  

Y   Non-dimensional space variable along y -axis  

T   Non-dimensional time variable  

1D   Non-dimensional dispersion coefficient along x -axis  

2D   Non-dimensional dispersion coefficient along y -axis  

U   Non-dimensional groundwater velocity along x -axis  

V   Non-dimensional groundwater velocity along y -axis  

Q   Non-dimensional contaminant decay rate coefficient  

1h , 2h ,  Constant parameters 

Z   Non-dimensional space variable  

   Non-dimensional parameter 

   Outer boundary of the axis symmetry in cylindrical region 
*K   Non-dimensional parameter

  
0J   Bessel function of first kind of zeroth order 

p   Root of Bessel’s function of zeroth order 

1,c K   Arbitrary constant 

1J   Bessel function of first kind of first order 

 ,K p T  Hankel transform of   ,K T  

iX                       Value of X  at thi  interval 

jY                   Value of Y  at 
thj interval 

kT                   Value of T  at thk  interval 

X   Length of sub-interval in X domain 
Y   Length of sub-interval in Y domain 

T   Length of sub-interval in T domain 

, ,i j kC   The contaminant concentration at a point ( , )i jx y at thk sub-interval of time T  
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INTRODUCTION 

In natural resources management, solute transport modeling is helpful to predict the solute concentration 

in aquifers, rivers, lakes and streams. The solute transport modeling is very much relevant 

describing advection dispersion equation. This advection-dispersion equation is solved by 

analytical approach and or numerical approach. Analytical approach provides physical insights 

into the solute transport phenomena and present benchmark solutions against which numerical 

approach can be tested. Analytical solutions are usually derived from the basic physical 

principles and are free from numerical and other truncation errors that often occur in numerical 

simulations (Zheng and Benett, 1995). In solute transport modeling, the advection-dispersion 

equation is widely used to describe the non-reactive solute dispersion in geological formations 

such as aquifer. The flow against dispersion in non-adsorbing porous formation has been 

investigated by Marino (1978), Aral and Tang (1992), Kumar and Kumar (2002), Chen et al., 

(1996), Singh et al., (2010) among others.   
There have been a multitude of investigations on one-, two- and three- dimensional solute transport 

modeling. Yeh (1981) presented an analytical solution for various types of sources release and aquifer 
configuration with the Green function approach on one-, two-, and three- dimensional solute transport.  

Latinopoulos et al., (1988) presented a method for obtaining analytical solutions for chemical 

transport in two-dimensional aquifers assuming a constant velocity field. They obtained the 

solution by integrating the solution of a modified dimensional differential equation considering 

the source as continuous and instantaneous injection. The analytical solution of a two-

dimensional solute transport equation was studied by Aral and Liao (1996). The solution was 

obtained using superposition principle for uniform, linear, asymptotic and exponential varying 

dispersion coefficient. Shan and Javandel (1997) obtained solutions of a two-dimensional solute 

transport equation in a vertical section of a homogeneous aquifer with steady uniform 

groundwater flow. The solutions were derived for both constant-flux and constant-concentration 

sources in a finite as well as semi-infinite domain. Park and Zhan (2001) provided analytical 

solutions of contaminant transport from one-, two-, and three dimensional finite sources in a 

finite-thickness aquifer using the Green function method. Using the Hankel transform technique 

(HTT), Kumar and Kumar (2002) obtained an analytical solution for pollutant transport in 

groundwater in a homogeneous finite aquifer. Here, the uniform input source concentration was 

taken at the far end from the origin, i.e. against the flow.  

Chen (2007) derived an analytical solution of two-dimensional advection-dispersion equation in 

cylindrical co-ordinates for non-axisymmetrical solute transport in a tracer test system using a 

power series technique coupled with the Laplace and finite Fourier cosine transform techniques. 

Here, the longitudinal and transverse dispersivities were assumed to be a linear function of solute 

distance. Chen et al., (2008) also presented an analytical approach to the two-dimensional 

advection-dispersion equation for describing solute transport in a uniform flow field with linear 

distance-dependent longitudinal and transverse dispersivities. Here, the extended power series 

method coupled with the Laplace and finite Fourier cosine transforms was used. Considering an 

aquifer-aquitard system, Zhan et al., (2009) presented an analytical solution of two-dimensional 

solute transport using the Laplace transform technique in which the first and third type boundary 

conditions were considered. Singh et al., (2010a) explored an analytical solution of two-

dimensional solute transport in a homogeneous finite aquifer using the Hankel Transform 

Technique in which the input source concentration was taken at the far end away from the origin. 

Chen et al., (2011) developed an analytical solution of two-dimensional solute transport in 
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porous media in the form of cylindrical co-ordinate system in finite domain. The first type and 

third type inlet boundary conditions were assumed to define the problem. The analytical solution 

was obtained by using the Finite Hankel Transform of second kind and general integral 

transform technique successively for different ranges of Peclet number. In most of the cases, the 

aquifer was initially assumed to be solute free which means no initial background concentration 

existed in the aquifer. This does not always happen in the aquifer in nature and, therefore, some 

initial concentration may exist in the aquifer. 

In the present study, a two-dimensional solute transport equation for a homogeneous finite 

aquifer was considered. Initially, the aquifer was clean, meaning that some initial background 

concentration exist in the aquifer and it was represented by an exponentially decreasing function 

of space instead of uniform or zero concentration, and, zero initial background concentration in 

the groundwater system was assumed by Singh et al., (2010). The uniform initial concentration 

is not always the case in the complex nature of geological formations and hence this work is 

extended with variable initial concentration may be with respect to time or space. The reason for 

considering an initial condition of this type was explored in the case of transient model (Franke 

and Reilly, 1987). At the other end of the aquifer, the time dependent input source concentrations 

is assumed as logistic sigmoid function which is different from time-dependent boundary 

condition taken by Singh et al., (2010). In most of the investigations, groundwater velocity has 

been considered steady. However, when the groundwater table rises and falls, the velocity of 

flow in the aquifer may be transient or unsteady.  In the present problem three different types of 

velocity expression have been taken as of Aral and Liao (1996). The dispersion coefficient as 

directly proportional to the seepage velocity is used. This dispersion theory was established by 

Ebach and White (1958), Scheidegger (1961), Rumer (1962), Bruce (1970), and explored by 

Kumar (1983).  The Hankel Transform Technique (HTT) of first kind of zeroth order is used to 

find an analytical solution for solute transport and it is compared with the numerical solution 

obtained from two-level explicit finite difference method to validate the solution. 

Mathematical Formulation  

Consider a homogeneous porous formation for example, aquifer that has an initial background 

concentration, which is assumed as a function of space, say,  expic x , where 
1 [ ] L

is the 

decay parameter and ic 3ML    is the solute concentration. The uniform initial concentration or 

zero concentration which is not remains same throughout the geological formations taken by 

many researchers. But the initial concentration may vary with time or space. Hence, the 

exponential decreasing function of space dependent term is taken into consideration in the 

present problem. The longitudinal and lateral directions at the origin are taken as x  and y  axes, 

respectively. Let 3c ML   denote the contaminant concentration in the aquifer at any time 

1 [ ];   [ ] t T u LT 
and 

1 [ ] v LT 
denote the x  and y groundwater velocity components, 

respectively; and 2 1 [ ] xD L T  and 
2 1 [ ] yD L T 

denote the dispersion coefficients along the x  and 

y  axes, respectively. The source of contamination is introduced as the point source and it 

reaches the water table at the point ,  x L y H  which is diametrically opposite from the origin, 

whereas the direction of flow is from origin toward the other end of the aquifer. The problem is 

one of determining c  as a function of space ( , )x y  and time t  . The physical system is 

graphically shown in Figure 1. 
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The partial differential equation (PDE) describing the two-dimensional advection and dispersion 

in a homogeneous, isotropic aquifer can be written as   

       
2 2

2 2x y

c c c c c
D t D t u t v t

t x y x y

    
   

                                                   

(1) 

Here, off diagonal dispersion components  and  xy yxD D are not taken into account as one of the 

axes coincides with the direction of average uniform velocity and accordingly  and  xy yxD D both 

are supposed to be zero (Bear and Verruijt, 1998). 

Let u  and v  be expressed as  

0 0( ) ( )u u f t and v v f t                                                                               (2) 

where 1 1

0 0 [ ]   [ ]u LT and v LT  = initial values of   u and v , respectively, and  f t is assumed to 

be different type of algebraic function. 

 For many types of porous media, the dispersion coefficient often varies proportionally to 

the seepage velocity. Therefore, let 

   0 0x yD au f t and D av f t        
                                                

(3) 

where a =dispersivity L that depends on the distribution of aquifer heterogeneities and scale of 

the field problem (Bedient et al.,1999). Using Eq. (2), Eq. (3) can be written as  

   0 0x x y yD D f t and D D f t        
                                                

(4) 

where 0 0 0 0x yD au and D av        are the initial values of   x yD and D , respectively. 

 As stated earlier, the initial contaminant concentration is a function of space say 

 expic x at 0t   and at ,  x L y H  . The input point source concentration has been taken as 

time-dependent in the form of logistic sigmoid function different from time dependent boundary 

condition taken by Singh et al., (2010). The logistic sigmoid function is horizontally asymptotic 

in nature, i.e., it increases continuously for 0t   and tends to 1 as t  . In the solute transport 

modeling context, the input point source concentration can be taken as of this form assuming that 

input concentration would initially increase with time and after a certain time period it would 

stabilize at an asymptotic value. Hence, the initial and boundary conditions are expressed as      

      , , exp , 0, 0, 0ic x y t c x x y t                  (5)
 

   

 
 

0  
, ,   , , 0

1 exp( )

c
c x y t x L y H t

qt
   

 
          (6) 

Here, 1q T    is the contaminant decay rate coefficient and 3

0c ML   is solute concentration. 
 

Using  Eqs. (2) and (4), Eq. (1) can be written as follows: 

                                 
 

2 2

0 0 0 02 2

1
x y

c c c c c
D D u v

f t t x y x y

    
   

    
                                         (7) 

Using the following transformation (Crank 1975), a new time variable T
* 

is introduced as:                                                              

      *

0

t

T f t dt                

(8) 

Now with the use of Eq. (8), Eq. (7) can be written as follows: 
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2 2

0 0 0 0* 2 2x y

c c c c c
D D u v

T x y x y

    
   

    
           (9) 

Now a set of non-dimensional variable is defined as follows: 

*

0

, , ,
c x y

C X Y T mT
c L H

                         

00 0 0
1 22 2

; ; ; ;
yx

DD u v q
D D U V Q

mL mH mL mH m
                                                         (10)                   

In terms of non-dimensional variables, the governing Eq. (9) can be written as: 

                                       
2 2

1 22 2

c C C C C
D D U V

T X Y X Y

    
   

    
         (11) 

The initial and boundary conditions can be written as 

                                   
0

, ,  exp ,          0,     0,    0ic
C X Y T XL X Y T

c
                           (12) 

 
1

, ,  1 ,          1,     1,    0
2 2

QT
C X Y T X Y T

 
     

 
                                            (13) 

The source of contamination in the horizontal plane is the time dependent input source at the far 

end from the origin, i.e., at ,  x L y H  , i.e., against flow. 

Analytical Solution 

To obtained the analytical solution of Eq. (11) subject to initial and boundary conditions given in 

Eqs. (12) and (13) applying the Hankel transform technique of first kind of zeroth order, the 

solution in non-dimensional form can be written as 

     

 

 

     

   
 

 

1 2

22 2 2
2 2 2

0 2

222 2
1 2 2

1
1 2

0 2

, , exp 1 1

1

2 4 4 4

1 2 1 1
1 exp

2 2 2 2 4 4

1
3

p

i

C X Y T h X h Y

Q QT Q

p D p D p D

J pQT Q Q
p D T

pJ p p D p D

c D
L h h

c D

  

  

  


   




     

 
     
    
 

 
                           

  
    



           

 2

1 2 2exp h h p D T

  
  
  
  
  
   

  
  
  
  

       
  

         

(14) 

where, 2 2

1 1 2 2 1 2

1 2

,      ,   
2 2

U V
D h D h h h

D D
      and 2

1

1
D

D
    . 

Numerical Solution  

The Numerical solution of Eq. (11) with Eqs. (12) and (13) is obtained with the help of two-level 

explicit finite difference method. The ,X Y and T   domains are divided into equal number of 

subinterval and represented as 
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1 0

1 0

1 0

, 1,2,..., , 0, 0.1

, 1,2,..., , 0, 0.1

, 1,2,..., , 0, 0.001

i i

j j

k k

X X X i M X X

Y Y Y j N Y Y

T T T k I T T







      

      

      

  

   

  

           (15) 

The contaminant concentration at a point ( , )i jx y at thk sub-interval of time T  is denoted as , ,i j kC . 

The first and second order derivative in Eq. (11) is approximated as forward difference 

approximation and central difference approximation respectively. Using two-level explicit finite 

difference method, Eq. (11) with Eqs. (12) and (13) become 

   

   

1 2
, , 1 , , 1, , , , 1, , , 1, , , , 1,2 2

1, , , , , 1, , ,

2 2i j k i j k i j k i j k i j k i j k i j k i j k

i j k i j k i j k i j k

D T D T
C C C C C C C C

x y

U T V T
C C C C

x y

    

 

 
      

 

 
   

 
          

       (16) 

 , ,0

0

exp , 0, 0i
i j i

c
C X L i j

c
                  (17) 

, ,

1
1 , , 0

2 2

k
M N k

QT
C i M j N k

 
     

 
               (18) 

The limitation of an explicit scheme is that there is a certain stability criterion associated with it, 

so that the size of time step cannot exceed a certain value. For the present problem the stability 

analysis has been done to improve the accuracy of the numerical solution (Bear and Verrujit 

1998) and the stability condition for the size of time step is obtained as     

                       

   
1 2

2 2

1
0

2
2 2

T
D D U V

X YX Y

  
 

   
    

    

         

(19) 

which satisfy the results and conditions obtained by Ashtiani and Hosseini (2005). 

 

RESULTS AND DISCUSSION 

We consider three different time-dependent forms of velocity expression followed by Aral and 

Liao (1996) and expressed as follows: 

 

1. Exponentially decreasing form of velocity   

   0 , 1 exp exp 1
mt mt

u u f t f t T mt K
K K

      
            

     
         (20) 

2. Asymptotic form of velocity  

   
   

0 ,
mt mt

u u f t f t T mt K
mt K mt K

 
        

            (21) 

3. Algebraic Sigmoid form of velocity 

   
 

  2 2

0
2 2

,
mt

u u f t f t T mt K K
mt K

     


           (22) 
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where K is the arbitrary constant. Considering 0K   in Eq. (20) to (22) results as   1f t  and it 

represent the problem with uniform velocity and dispersion coefficient. 

 The values of mt  has been considered as 29, 32 and these values of mt  yield t  1758, 1940 and 

2122 days at a regular interval of approximately 182days. If the value t  1758 days represents 

some date in the month of December when groundwater velocity is maximum and then t  1940 

days represents some date in June when groundwater velocity is minimum. Again, the next value 

of t , represents the month of December in the next year and so on.  

 

The two-dimensional solution for the different form of velocity expressions are computed for the 

values 0u =0.01km/year, 0v =0.001km/year, 0xD =6.0km
2
/year, 0yD =0.6km

2
/year,  m

=0.0165(/year), q =0.0001(/year),  0.001 / km  , ic =0.01, 0c =1, x  =100 km, y =50 km, L

=100 km and H =50 km. Figure2 represents the analytical and numerical solution of the problem 

for the above set of input values with asymptotic type of velocity expression at mt =26 and K =0 

i.e. for uniform seepage velocity and dispersion coefficient. It is observed that, the contaminant 

concentration decreases with distance. It is also observed that the numerical solution shows the 

same pattern as observed in the analytical solution which validates the analytical method used to 

solve the problem. Due to presence of some numerical error approximation, the numerical 

solution slightly deviates from analytical solution. Figure 3 represents the contaminant 

concentration profile for different values of mt  with asymptotic type velocity expression with K

=5. It shows that the contaminant concentration decreases with distance and increases with time 

throughout the aquifer. Figure 4 shows the contaminant concentration pattern for asymptotic type 

velocity expression with mt =26, 
2 2

0 07.0 / and 0.7 /x yD km year D km year      for different 

values of K . Here, it is observed that the contaminant concentration decreases on increasing the 

value of K . 

 

Figure 5 represents the contaminant concentration pattern for different values of longitudinal and 

transverse dispersion coefficient with K =5, mt =26. It shows that for asymptotic type of velocity 

expression the contaminant concentration decreases on increasing the dispersion co-efficient. 

Figure 6 shows the concentration pattern for varying initial seepage velocity along longitudinal 

and lateral direction for K =5, mt =26,
 0xD =6.0km

2
/year and 0yD =0.6km

2
/year.  

 

Here, it is observed that the contaminant concentration decreases on increasing the initial 

seepage velocity components. Figure 7 represents the concentration pattern for different types of 

velocity expression for the values K =5, mt =26,
 0u =0.01km/year, 0v =0.001km/year

 0xD

=6.0km
2
/year and 0yD =0.6km

2
/year. It is observed that the contaminant concentration decreases 

with distance and the rate of fall of contaminant concentration is faster in case of exponential 

type of velocity expression as compared to sigmoid and asymptotic type velocity expression. 

From the entire figure, it is also observed that the contaminant concentration decreases with 

distance in both longitudinal and lateral direction. 
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Figure 1: Physical model of the problem 

 

 

 
Figure 2: Concentration profile for asymptotic velocity expression for 

026, 0, 6xmt K D    
0 0 00.6, 0.01 0.001yD u and v     
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Figure 3: Concentration profile for asymptotic velocity expression for 

0 05, 6, 0.6,x yK D D   0 00.01 0.001u and v     

 
Figure 4: Concentration profile for asymptotic velocity expression for  

0 026, 7, 0.7x ymt D D     , 0 00.01 0.001u and v    
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Figure 5: Concentration profile for asymptotic velocity expression for 26, 5mt K   ,

0 00.01 0.001u and v     

 
Figure 6: Concentration profile for asymptotic velocity expression for  26, 5,mt K    

0 06 0.6x yD and D     
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Figure 7: Concentration profile for different velocity expression for 26, 5,mt K   

0 06, 0.6,x yD D    0 00.01 0.001u and v    . 

 

Conclusion 

An analytical solution to solute transport in a two-dimensional homogeneous finite porous 

formation is obtained. The Hankel Transform Technique (HTT) of first kind of zeroth order is 

employed. The obtained analytical result is compared with that of the numerical one obtained 

with the help of two-level explicit finite difference method. The initial concentration is taken as 

space dependent exponentially decreasing function. The time-dependent input boundary 

condition is considered at the other end as logistic sigmoid function to address the advective-

dispersive equation. These solutions may help to determine the contaminants concentration 

distribution pattern in homogeneous porous formations due to the release of a time-dependent 

source. It may also be applicable to benchmark the numerical codes and solution to the problem. 

The following conclusions can be drawn from this study: 

1. The numerical solution obtained for uniform seepage velocity and dispersion coefficient 

follows almost the same pattern as that of the pattern observed for analytical solution which 

validates the analytical method used in the problem up to 90% in agreement. 

2. The contaminant concentration decreases with distance but increases with time for asymptotic 

type time-dependent velocity expression. 

3. The solute concentration values decreases on increasing the arbitrary constant K  used in 

different types of velocity expression. 

4. On increasing the longitudinal and lateral dispersion coefficient the contaminant 

concentrations increases. 

5. The contaminant concentration decreases rapidly on increasing the initial seepage velocity 

along longitudinal and lateral direction i.e. on increasing the initial seepage velocity the 

contaminant concentration reduces.  
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6. The contaminant concentration values are compared for three different forms of seepage 

velocity expression and it has been observed that the exponential form of velocity expression 

decreases more gradually as compared to asymptotic and sigmoid type of velocity expression. 

7. The solute concentration decreases rapidly for the exponentially decreasing form than for the 

asymptotic and sigmoid form of velocity.  
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