AN INTERESTING PROBLEM RELATED TO PROGRESSION IN ALGEBRA

*Gopalan M.A., Vidhyalakshmi S. and Presenna R.
Department of Mathematics, SIGC, Trichy-620002, Tamilnadu
*Author for Correspondence

ABSTRACT
Given the product value of two non-zero distinct integers x, y and the value of the ratio $\frac{\text{lcm}}{\text{gcd}}$ of x, y, a process of obtaining the values of x and y is illustrated.

Keywords: Arithmetic mean, Harmonic Mean
MSC classification number: 11D99

INTRODUCTION
Every mathematics student is familiar with the concept of Arithmetic mean, Geometric mean and Harmonic mean between any two Natural numbers. For a variety of problems on Arithmetic mean, Geometric mean and Harmonic mean, one may refer (Bernald and Child, 2006; Hall and Knight, 1998). In page 91 of the journal “The Mathematics Teacher” published by the association of the Mathematics teacher of India, there is a problem involving Arithmetic mean and Harmonic mean. In this short communication an attempt has been made to generalize the above problem.

MATERIALS AND METHOD
Method of Analysis
Let x, y be any two non-zero distinct positive integers whose product is denoted by P.
Let $p= \text{gcd} (x,y), q= \text{lcm} (x,y)$. Note that $q>p$ and $xy=pq=P$. Let A be an arithmetic mean of p,q and H be a Harmonic mean of p,q. Denote the value of the ratio $\frac{A}{H}$ by N_1, a rational number.

Given the values of P and N_1, we illustrate below a process of obtaining the values of x and y. Consider

$$\frac{A}{H} = N_1 \Rightarrow (q+p)^2 = 4PN_1$$

$$q + p = 2\sqrt{PN_1} \quad (1)$$

We have the identity

$$(q-p)^2 = (q+p)^2 - 4pq$$

$$\Rightarrow (q-p)^2 = 4PN_1 - 4P$$

$$q - p = 2\sqrt{P(N_1-1)} \quad (2)$$

Solving (1) and (2), we get

$$q = \sqrt{PN_1 + P(N_1-1)}$$

$$p = \sqrt{PN_1 - P(N_1-1)}$$

It is noteworthy that the products PN_1 and $P(N_1-1)$ should be perfect squares. Since p is the gcd (x,y), we write

$x = pX, y = pY$, where gcd (X,Y)=1

Now, $P = xy = p^2XY$
\[XY = \frac{p}{p^2} \]

(4)

Which should be an integer. Then, it is possible to choose X, Y such that gcd (X,Y)=1. Substituting the values of p, X, Y in (3), the values of x, y are obtained.

A few examples are given below.

<table>
<thead>
<tr>
<th>S.no</th>
<th>P</th>
<th>(N_1)</th>
<th>(PN_1)</th>
<th>(P(N_1-1))</th>
<th>p</th>
<th>XY</th>
<th>X</th>
<th>Y</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>192</td>
<td>169</td>
<td>676</td>
<td>484</td>
<td>4</td>
<td>12</td>
<td>4</td>
<td>3</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>192</td>
<td>4</td>
<td>256</td>
<td>64</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>24</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>64</td>
<td>256</td>
<td>196</td>
<td>2</td>
<td>15</td>
<td>5</td>
<td>3</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>36</td>
<td>25</td>
<td>100</td>
<td>64</td>
<td>2</td>
<td>9</td>
<td>9</td>
<td>1</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td>98</td>
<td>49</td>
<td>25</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>256</td>
<td>100</td>
<td>400</td>
<td>144</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>169</td>
<td>676</td>
<td>576</td>
<td>2</td>
<td>25</td>
<td>1</td>
<td>25</td>
<td>2</td>
<td>50</td>
</tr>
</tbody>
</table>

CONCLUSION

To sum up, the following three conditions have to be satisfied

1) \(PN_1 \) is a perfect square
2) \(P(N_1 - 1) \) is also a perfect square
3) \(P \equiv 0 (\text{mod} \ p^2) \)

Also from the above table, it is observed that when P is a perfect square the ratio \((\text{Geometric mean of } p, q)^2 / (\text{Harmonic mean of } p, q)\) is an integer representing hypotenuse of a Pythagorean triangle.

REFERENCES

The Mathematics Teacher, the association of the Mathematics Teacher of India, Vol 49, issue 1 & 2, Pg 91, Problem no 7, 2013.