AN INTERESTING PROBLEM RELATED TO PROGRESSION IN ALGEBRA

*Gopalan M.A., Vidhyalakshmi S. and Presenna R.
Department of Mathematics, SIGC, Trichy-620002, Tamilnadu
*Author for Correspondence

ABSTRACT

Given the product value of two non-zero distinct integers x, y and the value of the ratio $\frac{\text { Arithmetic mean of gcd and lcm of } \mathrm{x}, \mathrm{y}}{\text { Harmonic mean of gcd and lcm of } \mathrm{x}, \mathrm{y}}$, a process of obtaining the values of x and y is illustrated.

Keywords: Arithmetic mean, Harmonic Mean
MSC classification number: 11D99

INTRODUCTION

Every mathematics student is familiar with the concept of Arithmetic mean, Geometric mean and Harmonic mean between any two Natural numbers. For a variety of problems on Arithmetic mean, Geometric mean and Harmonic mean, one may refer (Bernald and Child, 2006; Hall and Knight, 1998). In page 91 of the journal "The Mathematics Teacher" published by the association of the Mathematics teacher of India, there is a problem involving Arithmetic mean and Harmonic mean. In this short communication an attempt has been made to generalize the above problem.

MATERIALS AND METHOD

Method of Analysis

Let x , y be any two non-zero distinct positive integers whose product is denoted by P .
Let $\mathrm{p}=\operatorname{gcd}(\mathrm{x}, \mathrm{y}), \mathrm{q}=\operatorname{lcm}(\mathrm{x}, \mathrm{y})$. Note that $\mathrm{q}>\mathrm{p}$ and $\mathrm{xy}=\mathrm{pq}=\mathrm{P}$. Let A be an arithmetic mean of p, q and H be a Harmonic mean of p,q. Denote the value of the ratio $\frac{A}{H}$ by N_{1}, a rational number.

Given the values of P and N_{1}, we illustrate below a process of obtaining the values of x and y . Consider

$$
\begin{gather*}
\frac{A}{H}=\mathrm{N}_{1} \Rightarrow(q+p)^{2}=4 P N_{1} \\
q+p=2 \sqrt{P N_{1}} \tag{1}
\end{gather*}
$$

We have the identity

$$
\begin{align*}
& \quad(q-p)^{2}=(q+p)^{2}-4 p q \\
& \Rightarrow(q-p)^{2}=4 P N_{1}-4 P \\
&(q-p)=2 \sqrt{P\left(N_{1}-1\right)} \tag{2}
\end{align*}
$$

Sovlving (1) and (2), we get

$$
\begin{aligned}
& q=\sqrt{P N_{1}}+\sqrt{P\left(N_{1}-1\right)} \\
& p=\sqrt{P N_{1}}-\sqrt{P\left(N_{1}-1\right)}
\end{aligned}
$$

It is note worthy that the products $P N_{1}$ and $P\left(N_{1}-1\right)$ should be perfect squares. Since p is the $\mathrm{gcd}(\mathrm{x}, \mathrm{y})$, we write
$\mathrm{x}=\mathrm{pX}, \mathrm{y}=\mathrm{pY}$, where $\operatorname{gcd}(\mathrm{X}, \mathrm{Y})=1$
Now, $P=x y=p^{2} X Y$

Research Article

$$
\begin{equation*}
X Y=\frac{P}{p^{2}} \tag{4}
\end{equation*}
$$

Which should be an integer. Then, it is possible to choose X, Y such that $\operatorname{gcd}(\mathrm{X}, \mathrm{Y})=1$. Substituting the values of p, X, Y in (3), the values of x, y are obtained.
A few examples are given below.

S.no	P	N_{1}	$P N_{1}$	$P\left(N_{1}-1\right)$	p	XY	X	Y	x	y
1	192	$\frac{169}{48}$	676	484	4	12	4	3	16	12
2	192	$\frac{4}{3}$	256	64	8	3	3	1	24	8
3	60	$\frac{64}{15}$	256	196	2	15	5	3	10	6
4	36	$\frac{25}{9}$	100	64	2	9	9	1	18	2
5	24	$\frac{98}{48}$	49	25	2	6	3	2	6	4
6	256	$\frac{100}{64}$	400	144	8	4	1	4	8	32
7	100	$\frac{169}{25}$	676	576	2	25	1	25	2	50

CONCLUSION

To sum up, the following three conditions have to be satisfied

1) $P N_{1}$ is a perfect square
2) $P\left(N_{1}-1\right)$ is also a perfect square
3) $P \equiv 0\left(\bmod p^{2}\right)$

Also from the above table, it is observed that when P is a perfect square the ratio $\frac{(\text { Geometric mean of } \mathrm{p}, \mathrm{q})^{2}}{}$ is an integer representing hypotenuse of a Pythagorean triangle.

Harmonic mean of p, q

REFERENCES

Bernard and Child (2006). Higher Algebra (AITBS publisher \& distributors, Delhi).
Hall HS and Knight SR (1998). Higher Algebra (AITBS publisher \& distributors, Delhi).
The Mathematics Teacher, the association of the Mathematics Teacher of India, Vol 49, issue $1 \& 2, \operatorname{Pg} 91$,Problem no $7,2013$.

