PREVALENCE OF INTESTINAL PROTOZOAN PARASITES IN STRAY DOGS OF TABRIZ CITY, IRAN

*Garedaghi Yagoob¹ and Karimi Bahman²

¹Department of Veterinary Parasitology, Tabriz Branch, Islamic Azad University, Tabriz, Iran ²Faculty of veterinary medicine, Tabriz branch, Islamic Azad University, Tabriz, Iran *Author for Correspondence

ABSTRACT

Intestinal protozoan parasites are important enteropathogens in dogs. Moreover, several canine intestinal protozoan parasites are zoonotic and are considered important to public health. This study investigates the level of intestinal protozoan parasites in stray dogs, in Tabriz city, Iran.

Determination of the prevalence of infections was based on faecal examination. Stool samples (n = 100) collected from dogs of different ages and gender were analyzed using five techniques, i.e., centrifugal flotation in sucrose solution, centrifugal flotation in 33% Zinc solphate solution, Ziehl-Neelsen staining, trichrome staining and iodine staining. The overall prevalence of parasitism was 19 (19 %) dogs. The parasites most frequently detected were: *Giardia* spp. (9%), *Isospora* spp. (7%) and *Cryptosporidium* spp. (6%). Single parasitic infection was present in 13 (13%) dogs. There was no significant difference in the prevalence between male (18%) and female (20%) dogs (p>0.05). There was significantly (p<0.05) greater prevalence of parasites in dogs less than 1 year old. The results of this research showed that stray dogs are reservoirs for zoonotic intestinal protozoan parasites and should be considered important to public health. So that, it is imperative for human to avoid faecal contamination in streets, public gardens and parks. Also stray dogs should be euthanized in dog population control program in Iran.

Keywords: Intestinal Protozoan Parasites, Stray Dogs, Tabriz, Iran

INTRODUCTION

Intestinal protozoan parasites are important enteropathogens in dogs. Moreover, several canine intestinal protozoan parasites are zoonotic and are considered important to public health, e.g., Cryptosporidium, Giardia, Entamoeba and Isospora. All these intestinal protozoan parasites have an oralfecal transmission cycle and a major component for the spread of these parasites is the shedding of oocysts or cysts into the environment (Claerebout et al., 2009). It is common to observe intestinal protozoan parasites in canine of all ages, but the prevalence of infection is usually high in puppies, mainly due to the fact that certain modes of transmission are exclusive to the newly whelped or neonates and also, because young dogs have not yet acquired immunity to parasites (Ramirez-Barrios et al., 2004). The infective stages of protozoan parasites are cysts and oocysts passed in the faeces and are capable of prolonged survival in the environmental. Infection and re-infection of human, domestic animals or wildlife can occur when the cysts or oocysts are ingested via contamination water, food materials or through host to host (Leonhard et al., 2007). The clinical signs of protozoan infection are variable and occasionally some infected animals will be asymptomatic. However, severe clinical cases in young dogs will lead to diarrhea, anemia and death (Ramirez- Barrios et al., 2004). Previous studies have shown that intestinal protozoan parasites are common in dogs (Dubna et al., 2007; Mundim et al., 2007; Oliveira- Sequeira et al., 2002; Palmer et al., 2008; Papazahariadou et al., 2007; Ramirez-Barrios et al., 2004; Rimhanen-Finne et al., 2007). However, these studies were conducted in relatively limited geographic areas and resulted cannot necessarily be extrapolated to other regions. Understanding the epidemiology of the different parasites infections in a specific canine population is a useful tool for the veterinarian practitioner when he/she has to provide a clinical diagnostic (Ramirez-Barrios et al., 2004). Considering aspects related to public and animals' health, study of the prevalence of parasite infection in dogs should, therefore, be continuous task, with the most relevant aim being the establishment of control measures (Oliveira-Sequeira et al., 2002). The aim of our investigation was to determine prevalence of protozoan infections in stray dogs in Tabriz city, Iran.

Research Article

MATERIALS AND METHODS

Samples Collected

Free roaming stray dogs were randomly selected among the animals that were euthanized in dog population control program (according to OIE Guidelines), which was organized by municipality. A total of 100 stray dogs faecal specimens were collected randomly from Tabriz city of Iran, in 2013. Each faecal sample consisted of approximately 5 g of fresh stool, collected from rectum of the stray dogs and was accompanied by information about the gender and age of dogs. Then, the samples were immediately processed in the parasitology diagnostic laboratory of the Veterinary School of Islamic Azad University of Tabriz.

Parasitological Procedure

Faecal specimens were concentrated by the formalin-ether sedimentation method. Faecal smears of the sediment (20 μ L) were made and stained by the modified Ziehl-Neelson technique. The complete surface of the smear was examined for *Cryptosporidium* oocysts (Causape *et al.*, 1996). Smear of the faeces was prepared and stained with trichrome and iodine Stain to detect cysts or trophozoites of *Giardia* and *Entamoeba* (Tanyuksel and Petri Jr, 2003). Also, samples were examined for the presence of *Giardia* cysts and trophozoites by centrifugal flotation in 33% Zinc solphate solution (Mundim *et al.*, 2007). Additionally, faecal flotation in Sheathers sugar solution (500 g of sugar, 320 mL of water, 6.5 g of phenol), with a specific density of 1.3 g mL-1, were examined by light microscopy for *Isospora* spp. (Lindsay *et al.*, 1997).

Analysis of Results

The data analysis was performed separately by grouping the animals by age (≤ 1 year and >1 year) and gender (male and female). In each case, the general prevalence for all intestinal protozoan parasites and the prevalence of each particular parasite were analyzed by using x2 test and 17 version of SPSS software.

RESULTS

Intestinal protozoan parasites were detected in feces of 19 dogs (19%). Six samples (6%) contained *Cryptosporidium* spp. oocysts, 9 (9%) contained *Giardia* spp. cysts and 7 (7%) contained *Isospora* spp. oocysts (Table 1). *Entamoeba* spp. Was not found in samples. Ten (20%) of the female dogs were eliminating cysts or oocysts of intestinal protozoan in their faeces, while Nine (18%) of the male dogs were infected. In this study, no statistical differences were found between infection by intestinal protozoan parasites and sex of the dogs (p>0.05). When the general prevalence analyzed by gender, no statistical differences in prevalence of *Cryptosporidium, Giardia* and *Isoapora* occurred between female dogs and male dogs (p>0.05). With respect to the age of the dogs, five (25%) of the puppies and eight (10%) of the adults were infected by intestinal protozoan parasites. Statistical differences were found between analyzed by age, statistical differences in prevalence of *Isoapora* occurred between dogs ≤ 1 years old and 1<dogs (p<0.05), but no statistical differences in prevalence of *Cryptosporidium* and *Giardia* occurred between this two groups (p>0.05), (Table 2).

Tuble 11 1 10 valence of marviauar messimal provozoan parabiles in 100 bitag uogs						
Parasite	No. of infected dogs	Relative percentage ¹	Percentage of total dogs ²			
Cryptosporidium	6	31.57	6			
Giardia	9	47.36	9			
Isospora	7	36.84	7			
Entamoeba	0	0.00	0.00			
Total ³	22	-	-			

Table 1:	Prevalence	of individual	intestinal	protozoan	narasites in	100 stray	v dogs
I apic I a		or mary iaaa	musuna	protozoan	parasius m	The straight of the straight o	/ UUZS

1: Percentages were calculated as the number possessing an individual parasite divided by the total positive dogs (13); 2: Percentages were calculated as the number possessing 1, 2 and 3 parasites species divided by the total dogs (98); 3: This total is greater than 13 because of multiple parasitism.

Table 2. Relation	unsmp or a	age and genu	er to preva	itelite of life	stillar pro	tuzuali parasi	ites in 100	stray ubgs
	Gender				Age			
	Female		Male		1≥0		1<0	
Parasite	No. of infected	Percentage ¹	No. of infected	Percentage ¹	No. of infected	Percentage ¹	No. of infected	Percentage ¹
	dogs		aogs		dogs		dogs	
Cryptosporidium	3	6	3	6	2	10	2	2.50
Giardia	5	10	4	8	2	10	5	6.25
Isospora	3	6	4	8	3	15	2	2.50
Entamoeba	0	0.00	0	0.00	0	0.00	0	0.00
Total parasitized dogs ²	10	20	9	18	5	25	8	10
Total ³	50	-	50	-	20	-	80	-

Table 2: Relationship of age and gender to prevalence of intestinal protozoan parasites in 1	100 stray dogs
--	----------------

1: Percentages were calculated by dividing the number of dogs possessing an individual parasite by the total number of individual in the group.

These figures total greater than 100% because of multiple parasitism; 2: The percentages were calculated by dividing the number of positive dogs

by the total number on individual in the age and gender group; 3: Total number of dogs in each age and gender group; *: p < 0.05

DISCUSSION

There have many studies of the general prevalence of intestinal protozoan parasites in dogs population worldwide (Dubna et al., 2007; Little et al., 2009; Mundim et al., 2007; Oliveira-Sequeira et al., 2002; Palmer et al., 2008; Papazahariadou et al., 2007; Ramirez-Barrios et al., 2004; Rimhanen-Finne et al., 2007). Prevalence is variable and depended on a number of factors including age, living conditions, diagnostic methodology employed and region studied (Mundim et al., 2007). In the present study, the overall prevalence of intestinal protozoan parasites in dogs was 19%. The overall prevalence of *Giardia* infection (9%) identified in this study is approximately similar to that previously reported in Australia (9.4%) (Palmer et al., 2008), Greece (4.3%) (Papazahariadou et al., 2007), Finland (5%) (Rimhanen-Finne et al., 2007), United States (4%) (Little et al., 2009). Although the overall prevalence of this parasite has been reported in Brazil (12.2%) (Oliveira-Sequeira et al., 2002). Also Papini et al. (2005) and Szenasi et al. (2007) found high prevalence of infection of 55.2 and 58.8% in kenneled dogs respectively. It may be attributed to climate conditions. In this study, no statistical differences between infection by Giardia spp. and sex of the dogs were found. This confirms the finding of Kirkpatrick (1988); Bugg et al. (1999) and Huber et al. (2005). No statistical bias for Giardia infection due to age of dogs was found in the present study. This confirms the finding of Huber et al. (2005). The presence of Giardia spp. cysts was statistically associated with the presence

of other intestinal protozoan. In the present study, *Giardia* spp. was mainly associated with *Isospora* spp. (3 cases) and this is in agreement with Oliveira- Sequeira *et al.* (2002), who found a greater prevalence of *Giardia* spp. associated with *Isospora* spp. than with other parasites.

With respect to *Cryptosporidium* spp., the infection rate of 6 % is approximately in agreement with Papazahariadou *et al.* (2007), who found 2.8% of faecal samples from dogs collected in the Serres Prefecture, Northern Greece to contain oocysts of *Cryptosporidium* spp. Epidemiological studies on the prevalence of *Cryptosporidium* in dogs showed the infection rates are variable according to geographic area and range from 1.4% in Czech (Dubna *et al.*, 2007), 2.41% in Brazil (Huber *et al.*, 2005), 1.4% Uberlandia (Mundim *et al.*, 2007), 2% in California (El-Ahraf *et al.*, 1991). The likelihood of finding a source of oocyst could explain differences in prevalence between different areas. Other researchers suggested that prevalence may be highest in dogs from rural environments, since Cryptosporidiosis is primarily associated with farm livestock (Causape *et al.*, 1996). Grimason *et al.* (1993) and coworker found 1% of the faecal specimen collected in seven public parks in Scotland contained *Cryptosporidium* oocysts, with a prevalence in individual parks ranging from 0-2.4%. In this study, no statistical

Indian Journal of Fundamental and Applied Life Sciences ISSN: 2231-6345 (Online) An Open Access, Online International Journal Available at http://www.cibtech.org/jls.htm 2014 Vol. 4 (2) April-June, pp. 20-24/Yagoob and Bahman

Research Article

differences between infection with *Cryptosporidium* spp. and sex of the dogs were found. This confirms the finding of Huber *et al.* (2005). No statistical differences between infection with *Cryptosporidium* spp. and age of the dogs were found. Also, Causape *et al.* (1996) found no statistically differences in prevalence occurred between dogs under 1 year of age and dogs over 1 year old.

Another very common parasite found in the evaluated dogs was *Isospora* spp. (7%), which shows that these coccidia are the main intestinal protozoa found in these pets, mostly in younger animals, as indicated by Ramirez-Barrios *et al.* (2004); Visco *et al.* (1977) and Vanparijs *et al.* (1991). In the presence study, we found statistical differences between infection by *Isospora* and age of the dogs (p<0.05). *Isospora* spp. was the most common enteric protozoan of stray dogs in our study (7%), that similar results were obtained by Vanparijs *et al.* (1991), who observed

Isospora spp. prevalence of 5.2% in dogs in Belgium. Although, prevalence is lower than in previous surveys in Venezuela by Ramirez-Barrios *et al.* (2004), in Zaragoza, Spain by Causape *et al.* (1996) and in Sao Paulo State, Brazil by Oliveira-Sequeira *et al.* (2002), who found 8.1, 9.9 and 8.5% prevalence, respectively. Frequency of intestinal protozoan parasites in the studied stray dogs was high. *Giardia* spp. and *Isospora* spp. were the most frequent parasites.

Conclusion

The results of this research showed that stray dogs are reservoirs for zoonotic intestinal protozoan parasites and should be considered important to public health. Stray dogs may have an important role in the transmission of some diseases and understanding the pathogenicity and epidemiology of potential zoonotic agents in this and other animals closely associated with human is fundamental to public health. So that, it is imperative for human to avoid faecal contamination in streets, public gardens and parks. Also stray dogs should be euthanized in dog population control program in Iran.

ACKNOWLEDGMENTS

The authors wish to thanks the Islamic Azad University, Tabriz Branch, Tabriz, Iran for the financial supports, and all laboratory technicians for technical aids in this project.

REFERENCES

Bugg RJ, Robertson ID, Elliot AD and Thompson RCA (1999). Gastrointestinal parasites of urban dogs in Perth, Western Australia. *The Veterinary Journal* 157 295-301.

Causape AC, Quilez J, Sanchez-Acedo C and Del Cacho E (1996). Prevalence of intestinal parasites, including *Cryptosporidium* parvum, in dogs in Zaragoza city, Spain. *Veterinary Parasitology* 67 161-167. Claerebout E, Casaert S, Dalemans AC, De Wilde N and Levecke B *et al.*, (2009). *Giardia* and other intestinal parasites in different dog populations in Northern Belgium. *Veterinary Parasitology* 161 41-46. Dubna S, Langrova I, Napravnik J, Jankovska I and Vadlejch J *et al.*, (2007). The prevalence of intestinal parasites in dogs from Prague, rural areas and shelters of the Czech Republic. *Veterinary Parasitology* 145 120-128.

El-Ahraf A, Tacal Jr JV, Sobih M, Amin M and Lawrence W et al., (1991). Prevalence of cryptosporidiosis in dogs and human beings in san bernardino county, California. *Journal of the American Veterinary Medical Association* 198 631-634.

Garedaghi Yagoob (2011). Seroprevalence of Neospora Caninum in Stray Dogs. *American Journal of Animal and Veterinary Sciences* **6**(3) 100-104.

Grimason AM, Smith HV, Parker JFW, Jackson MH and Smith PG *et al.*, (1993). Occurrence of *Giardia* sp. cysts and *Cryptosporidium* sp. Oocysts in faeces from public parks in the west of Scotland. Epidemiol. Infect., **110** 641-645.

Huber F, Bomfin TCB and Gomes RS (2005). Comparison between natural infection by *Cryptosporidium* sp., *Giardia* sp. In dogs in two living situations in the West Zone of the municipality of Rio de Janeiro. *Veterinary Parasitology* **130** 69-72.

Kirkpatrick CE (1988). Epizootiology of endoparasitic infections in pet dogs and cats presented to a veterinary teaching hospital. *Veterinary Parasitology* **30** 113-124.

Indian Journal of Fundamental and Applied Life Sciences ISSN: 2231-6345 (Online) An Open Access, Online International Journal Available at http://www.cibtech.org/jls.htm 2014 Vol. 4 (2) April-June, pp. 20-24/Yagoob and Bahman **Research Article**

Leonhard S, Pfister K, Beelitz P, Wielinga C and Thompson RCA (2007). The molecular characterization of *Giardia* from dogs in Southern Germany. *Veterinary Parasitology* **150** 33-38.

Lindsay DS, Dubey JP and Blagburn BL (1997). Biology of *Isospora* spp. from humans, nonhuman primates and domestic animals. *Clinical Microbiology Reviews* 10 19-34.

Little SE, Johnson EM, Lewis D, Jaklitsch RP and Payton ME *et al.*, (2009). Prevalence of intestinal parasites in pet dogs in the United States. *Veterinary Parasitology* **166** 144-152.

Mirzaei M (2010). Prevalence of Stray Dogs with Intestinal Protozoan Parasites. American Journal of Animal and Veterinary Sciences 5 86-90.

Mundim MJS, Rosa LAG, Hortêncio SM, Faria ESM and Rodr RM *et al.*, (2007). Prevalence of *Giardia* duodenalis and *Cryptosporidium* spp. In dogs from different living conditions in Uberlândia, Brazil. *Veterinary Parasitology* 144 356-359.

Oliveira-Sequeira TCG, Amarante AF, Ferrari TB and Nunes LC (2002). Prevalence of intestinal parasites in dogs from Sao Paulo State, Brazil. *Veterinary Parasitology* **103** 19-27.

Palmer CS, Thompson RCA, Traub RJ, Rees R and Robertson ID (2008). National study of the gastrointestinal parasites of dogs and cats in Australia. *Veterinary Parasitology* **151** 181-190.

Papazahariadou M, Founta A, Papadopoulos E, Chliounakis S and Antoniadou-Sotiriadou K *et al.*, (2007). Gastrointestinal parasites of shepherd and hunting dogs in the Serres Prefecture, Northern Greece. *Veterinary Parasitology* **148** 170-173.

Papini R, Gorini G, Spaziani A and Cardini G (2005). Survey on giardiosis in shelter dog populations. *Veterinary Parasitology* **128** 333-339.

Ramirez-Barrios RA, Barboza-Mena G, Muoz J, Angulo-Cubillan F and Hernandez E *et al.*, (2004). Prevalence of intestinal parasites in dogs under veterinary care in Maracaibo, Venezuela. *Veterinary Parasitology* **121** 11-20.

Rimhanen-Finne R, Enemark HL, Kolehmainen J, Toropainen P and Hanninen ML (2007). Evaluation of immunofluorescence microscopy and enzyme-linked immunosorbent assay in detection of *Cryptosporidium* and *Giardia* infections in asymptomatic dogs. *Veterinary Parasitology* **145** 345-348.

Szenasi Z, Marton S, Kucsera I, Tanczos B and Horvath K *et al.*, (2007). Preliminary investigation of the prevalence and genotype distribution of Giardia intestinalis in dogs in Hungary. *Parasitology Research* **101** 145-152.

Tanyuksel M and Petri Jr WA (2003). Laboratory diagnosis of amebiasis. *Clinical Microbiology Reviews* 16 713-729.

Vanparijs O, Hermans L and Van Der Flaes L (1991). Helminth and protozoan parasites in dogs and cats in Belgium. *Veterinary Parasitology* 38 67-73.

Visco RJ, Corwin RM and Selby LA (1977). Effect of age and sex on the prevalence of intestinal parasitism in dogs. *Journal of the American Veterinary Medical Association* 170 835-837.