Research Article

MICROSPORIDIAL INFECTION IN SOME DOMESTIC AND LABORATORY ANIMALS IN IRAQ

Hafidh I. Al-Sadi1 and *Saevan Saad Al-Mahmood2
1 Department of Oral and Maxillofacial Surgery, College of Dentistry
2 Department of Pathology and Poultry Diseases, College of Veterinary Medicine
University of Mosul, Mosul, Iraq
* Author for Correspondence

ABSTRACT
Microsporidian are obligate intracellular opportunistic fungal pathogens that infect a wide range of hosts including insects, fish, birds, and mammals. Microsporidian infection in mammals occurs world-wide but prevalence data vary widely according to reliability of detection methods. Objective of the present study was to report for the first time in Iraq the prevalence of spontaneous microsporidian infection in cattle (n=115), sheep (n=102), horses (n=97), donkeys (n=117), cats (n=53), dogs (n=80), rabbits (n=152), mice (n=119), rats (n=95), pigeons (Columba livia) (n=83), chickens (n=71), zebra finches (Taeniopygia guttata) (n=41), and the common carp (Cyprinus carpio L.) (n=121). All of the animals were from Nineveh province, Iraq and the survey was done during the period June 1, 2012 to June 1, 2013. Pathological lesions of spontaneous microsporidiosis in rabbits, mice, and rats were also reported. Fecal examination was done using Giemsa, quick–hot Gram – chromotrope, Weber – green modified trichrome, and Ryan – blue modified trichrome stains. For histopathological examination tissue sections were stained with hematoxylin and eosin, Giemsa, Gram, periodic acid–Schiff (PAS), modified Gram (Brown – Brenn), and the modified trichrome stains. Prevalence of microsporidian infection was 10.4% in cattle, 6.9% in sheep, 14.4% in horses, 7.7% in donkeys, 9.4% in cats, 13.8% in dogs, 27.0% in rabbits, 10.1% in mice, 15.8% in rats, 6.0% in pigeons, 9.9% in chickens, 9.8% in zebra finches, and 12.4% in fish. Infected rabbits showed non-suppurative focal or multifocal meningoencephalitis, focal interstitial nephritis, non-suppurative portal infiltration and heavy infiltration of mononuclear cells in the liver, non-suppurative pneumonia, and blunting of the intestinal villi. Inflammations in other organs were rare but lymphoid hyperplasia of the white pulp of the spleen was observed in most rabbits. Parasites were seen in renal tubular epithelium, endothelium of blood capillaries within renal interstitium, and enterocytes of the intestinal villi. Similar histopathological lesions but of lower intensity were seen in mice naturally infected with microsporidia. In rats, the lesions were similar to those seen in rabbits but brain lesions were not found. In conclusion, microsporidian infection is fairly common in domestic and laboratory animals as well as in fish and birds in Nineveh province, Iraq. These animals may serve as important source of spore contamination for opportunistic infections in humans. Further studies are needed to elucidate the occurrence of microsporidian infection in humans and to ascertain the entity of the various microsporidian species.

Key Words: Microsporidian, Infection, Domestic, Laboratory, Animals, Iraq.

INTRODUCTION
Microsporidian are eukaryotic, obligate intracellular, spore–forming pathogens that infect almost all animal phyla (invertebrate and vertebrate hosts), including other protists (Mladineo and Lovy, 2011). Historically, these microorganisms have been considered “primitive” protozoa, however, the molecular phylogenetic analysis has led to the recognition that these organisms are not primitive but degenerate protists and that they are most closely related to fungi and not to protozoa (Lee et al., 2008). At present, the fungal nature of the microsporidia is well accepted but their exact position in the fungal tree remains debated (McLaughlin et al., 2009; Keeling, 2009; Capella – Gutierrez et al., 2012). Approximately 1400 species belonging to 170 genera are included in the phylum Microsporidian (Wagnerova et al., 2013) and only 14 species have been reported as opportunistic pathogens in mammals (Didier and Weiss, 2006). Thirteen microsporidian species have been reported to infect humans causing diarrhea in immunocompromised individuals, mainly AIDS patients; in some cases, infection can also occur in otherwise healthy hosts (Lee et al., 2010). Four microsporidian species are
Research Article

known to infect domestic animals namely *Enterocytozoon bieneusi*, *Encephalitozoon cuniculi*, *Encephalitozoon intestinalis*, and *Encephalitozoon hellem* (Wagnerova et al., 2013). Microsporidian are quite common in seawater, fresh water and estuaries and constitute a constant threat for aquaculture (Rodriguez – Tovar et al., 2011). More than 158 microsporidian species in 7 genera have been documented to infect fish (Casal et al., 2008). Infections by this microorganism cause reduced growth rate of fish and decreased productivity in fish farms (Constantine, 1999). Some microsporidian species, such as *Encephalitozoon* spp. and *E. bieneusi*, are proven to be zoonotic (Mathis et al., 2005). Microsporidian have long been known to be causative agents of economically important diseases in insects (silk worms and honey bees) (Becnel and Andereadis, 1999). Additionally, microsporidia have been added to the National Institutes of Health list of priority pathogens, as well as the Environmental Protection Agency list of waterborne microbial contaminants of concern (Hoffman et al., 2008). Mink industry also has been compromised by microsporidiosis, and subclinical microsporidia infections in laboratory animals have interfered with biomedical research (Didier et al., 2004).

Microsporidian spores are the mature and infectious stage of the life cycle and they are resistant and survive for long periods of time in the environment (Fayer, 2004; Didier and Weiss, 2008). Spores of microsporidian species that infect mammals are small and oval in shape, measuring approximately 1.0 – 3.0 μm by 1.5 – 4.0 μm. Spores are surrounded by two layers, a glycoprotein outer layer and a chitinous inner layer (Southern et al., 2007; Didier and Weiss, 2008). Several proteins have been recognized within the spore wall and the endospores including SWP1, SWP2, SWP3 (EnP2) and EnP1 (Peuvel – Fanget et al., 2006; Xu et al., 2006). Some of these proteins may be involved in spore wall adhesion to host cells or mucin and thus may play a role in the process of adhesion (Southern et al., 2007). Within the cytoplasm of the spore are a nucleus in a monokaryon or diplokaryon arrangement, an anterior anchoring disk, a membranous lamellar polaroplast that appears to include an atypical Golgi apparatus, polar vesicles that are likely to be reduced mitochondria called mitosomes, endoplasmic reticulum, ribosomes, and a poster vacuole (Beznoussenko et al., 2007). Additionally, the cytoplasm contains a unique structure, the polar tube, which infects the host cell during germination (Didier and Weiss, 2008). The polar tube arises from the anchoring disk and coils several times within the posterior region of the spore. A builds up of osmotic pressure result in swelling of the posterior vacuole and causes the polar tube to evert, followed by transfer of the contents of the spore through the 50 – 500 μm – long polar tube into the host cell (Keeling and Slamovits, 2004).

In humans, *Enterocytozoon bieneusi*, *Encephalitozoon intestinalis*, *Encephalitozoon hellem*, and *Encephalitozoon cuniculi* have been reported as opportunistic pathogens in human immunodeficiency virus (HIV) - infected patients and other immunocompromised patients such as transplant recipients (Notermans et al., 2005). Microsporidial infections have also been described in immunocompetent individuals such as travelers (Muller et al., 2001). *E. bieneusi* and *E. intestinalis* cause severe persistent diarrhea in HIV - infected patients and they are the most commonly isolated species from stool specimens (Franzen and Muller, 2001). Additionally, Encephalitozoon species have been found to cause rhinosinusitis, keratoconjunctivitis, nephritis, hepatitis and disseminated infections (Notermans et al., 2005). The Encephalitozoon species have been isolated from urine and respiratory excretions, and *E. hellem* and *E. cuniculi* have been occasionally detected in stool specimens (Muller et al., 2001). *Encephalitozoon cuniculi* has been studied more extensively than the other species and has been reported in the common laboratory rodents as well as human and non – human primates. *E. intestinalis* was isolated for the first time from mammals other than humans from feces of donkeys, dogs, pigs, cow, and goat (Bornay – Linares et al., 1998). *Enterocytozoon bieneusi* has been detected in pigs, cows, goats, chickens, cats, turkeys and in simian immunodeficiency virus – inoculated monkeys (Lores et al., 2002).

Microsporidian infections in mammals have been suggested to occur via ingestion or inhalation of spores. Vertical or transplacental transmission of microsporidiosis has been described in carnivores, including foxes and domestic dogs, and occasionally in non – human primates, horses, rabbits, and rodents (Didier et al., 2004). Transmission of microsporidiosis was possible experimentally in laboratory animals using the intraperitoneal, intravenous, intrarectal, intratracheal and intracerebral inoculations. The primary site of infection depends on the route of inoculation and typically occurs in epithelial cells lining the gastrointestinal or respiratory tracts. Following germination of the spores and
infection of the host cells, the organisms multiply by merogony, and by sporogony differentiate into spores.

Most of the available knowledge on the immune response against microsporidia is based on the model infection of mice with *Encephalitozoon cuniculi* (Salat *et al.*, 2008). This species of microsporidia is associated with HIV infection, organ transplants, travelers and the elderly (Didier, 2005; Moretto *et al.*, 2010). It has been suggested that cell – mediated immunity is critical for host resistance against *E. cuniculi* infection (Khan *et al.*, 2001) and that CD8⁺T cells paly a predominant role during this type of infection (Khan *et al.*, 1999). *E. cuniculi* challenge was fatal in mice lacking CD8⁺T cells and it has been suggested that CD8⁺T-cell cytotoxic response is essential for protective immunity against this parasite. Braunfuchsova *et al.*, 2002 reported that the significance of CD4⁺ and CD8⁺T lymphocytes in protecting mice against *E. cuniculi* infection differs depending on the route of infection. CD8⁺ T lymphocytes have been found to be essential for protection after intraperitoneal infection and CD8⁺ T – lymphocyte – deficient mice were able to overcome the outcome of the disease following peroral infection. It was proposed that CD8⁺T- lymphocyte – independent protection is mediated by CD4⁺T lymphocytes producing gamma interferon (IFN-γ), and by B lymphocytes producing specific antimicrosporidal antibody (Sak *et al.*, 2006; Salat *et al.*, 2006).

IFN-γ is essential for survival of mice following intraperitoneal or peroral infection (Khan and Moretto, 1999; Salat *et al.*, 2005). Additionally, it has been found that IFN-γ – activated macrophages are able to kill microsporidia in vitro (Jelinek *et al.*, 2007). Toll – like receptor 4 (TLR4) has been found to be critical in the induction of CD8⁺T-cell immunity against *E. cuniculi* infection (Lawlor *et al.*, 2010).

From review of the literature it became clear that microsporidiosis has not been previously reported in humans and animals in Iraq. The aim of this study was to report the prevalence of spontaneous (naturally – occurring) microsporidiosis in some domestic and laboratory animals and to describe the pathology of the spontaneous disease in rabbits, mice and rats in Iraq.

MATERIALS AND METHODS

Animals

Fecal samples were collected randomly from cattle (n=115), sheep (n=102), horses (n=97), donkeys (n=117), cats (n=53), dogs (n=80), rabbits (n=152), mice (n= 119), rats (n=95), pigeons *Columba livia* (n=83), chickens (n=71), zebra finches (*Taeniopygia guttata*) (n=41), and the common carp (*Cyprinus carpio L.*) (n=121). Animals that were included in the study were all from Niniveh Province and the fecal samples were collected during the period extending from June 1, 2012 to June 1, 2013. As far as the rabbits, mice and rats they were from laboratory colonies reared in the Animal House, College of Veterinary Medicine, University of Mosul as well as the Animal Houses of the Colleges of Medicine and Education, University of Mosul.

Fecal samples were collected directly from the rectum into plastic cups and held at 4°C for 18 – 24 hours. In the laboratory, a preservative (5-10% neutral buffered formalin – sodium acetate and 4% sodium permanganate) was added to feces at the rate of 10 ml of the preservative to each gram of the fecal specimens. The mixture was kept in the refrigerator at 4°C till examination which was done within 24 hours (Garcia, 2007).

Processing of Fecal Samples

The fecal samples were sieved through gauze and cotton to get rid of the large objects or sediments, placed in 15 ml test tubes, and centrifuged at 7500 round/minute (rpm) for 40 minutes. Resuspension of the sediment was done using phosphate buffered saline (PBS) and the test tubes were centrifuged at 7500 rpm for 40 minutes. The filtrate was discarded and the sediment (1 ml) from each tube was resuspended in a test tube and thus became ready for examination.

A drop of the precipitate was placed on a glass microscope slide and was spread by a second slide and the smear was left to dry at room temperature. The slides were then dipped in absolute methyl alcohol for fixation and left to dry at room temperature. Staining of the smears was done with the following stains; Giemsa, quick – hot Gram – chromotrope, Weber – green modified trichrome, Ryan – blue modified trichome and Calcofluor white stains (Weber *et al.*, 1992; Ryan *et al.*, 1993; Garcia, 2002; Garcia, 2007; Suvarna *et al.*, 2013).
Detection and Morphometry of Spores
The criteria used to define microsporidia – positive animals was the presence of one or more pinkish or pinkish – violet ovoid structure with a spore wall and a belt – like stripe, over an examination of at least 100 field /100X, confirmed by two examiners. Thin fecal smears were prepared and stained with one of the standard stains, and the length and width of 50 spores per glass microscope slide were measured using an Italian microscope (Optica) and an optical micrometer. The obtained numbers were multiplied by the microscope tube factor which is 1.6 for the oil immersion lens and measurements of the spores were recorded in micrometers (Reabel et al., 2012).

Histopathological Examination
Laboratory animals (rabbits, mice and rats) that were positive for microsporidian infection (fecal examination) were euthanised using chloroform (Cooney et al., 2013). Following gross pathological examination, tissue specimens were collected from the brain, kidneys, liver, lungs, intestines, pancreas, heart, and spleen. These tissue specimens were fixed in 10% formalin for 48 – 72 hours (Suvarna et al., 2013). Following fixation, the tissue specimens were washed with tap water, dehydrated in ascending grades of alcohol, cleared in xylol and embedded in paraffin wax (60 – 62 °C melting point). Sections of 4 – 5 μm thickness were cut and stained with hematoxylin and eosin, Giemsa, Gram, periodic acid – Schiff (PAS), modified Gram (Brown – Brenn), and the modified trichrome stains (Garcia, 2002; Garcia, 2007; Suvarna et al., 2013).

Statistical Analysis
Data concerning the length and width of the spores in various experiments were analysed using statistical software (SPSS), version 16.0 and the values were presented as mean, standard error, and range in micrometers (Petrie and Watson, 2013).

RESULTS AND DISCUSSION
Results
Prevalence of Microsporidial infection in various domestic and laboratory animals examined in this study is shown in Table (1). From data presented in this Table it is evident that the frequency of occurrence of microsporidiosis in various animal species arranged in order of decreasing frequency was in rabbits (27%), rats (15.8%), horses (14.4%), dogs (13.8%), fish (12.4%), cattle (10.4%), mice (10.1%), chickens (9.9%), zebra finches (9.8%), cats (9.4%), donkeys (7.7%), sheep (6.9%), and pigeons (6%). Table (2) presents the measurements (length and width in micrometers) of microsporidia that have been diagnosed in this study. The size of the spores ranged from 1.5 – 2.4 μm length to 0.6 – 1.6 μm width (Figure 1).

<table>
<thead>
<tr>
<th>Animals</th>
<th>Number of examined cases</th>
<th>Number of positive cases</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle</td>
<td>115</td>
<td>12</td>
<td>10.4</td>
</tr>
<tr>
<td>Sheep</td>
<td>102</td>
<td>7</td>
<td>6.9</td>
</tr>
<tr>
<td>Horses</td>
<td>97</td>
<td>14</td>
<td>14.4</td>
</tr>
<tr>
<td>Donkeys</td>
<td>117</td>
<td>9</td>
<td>7.7</td>
</tr>
<tr>
<td>Cats</td>
<td>53</td>
<td>5</td>
<td>9.4</td>
</tr>
<tr>
<td>Dogs</td>
<td>80</td>
<td>11</td>
<td>13.8</td>
</tr>
<tr>
<td>Rabbits</td>
<td>152</td>
<td>41</td>
<td>27.0</td>
</tr>
<tr>
<td>Mice</td>
<td>119</td>
<td>12</td>
<td>10.1</td>
</tr>
<tr>
<td>Rats</td>
<td>95</td>
<td>15</td>
<td>15.8</td>
</tr>
<tr>
<td>Pigeons</td>
<td>83</td>
<td>5</td>
<td>6.0</td>
</tr>
<tr>
<td>Chickens</td>
<td>71</td>
<td>7</td>
<td>9.9</td>
</tr>
<tr>
<td>Zebra Finches</td>
<td>41</td>
<td>4</td>
<td>9.8</td>
</tr>
<tr>
<td>Fish</td>
<td>121</td>
<td>15</td>
<td>12.4</td>
</tr>
<tr>
<td>Total</td>
<td>1246</td>
<td>157</td>
<td>12.6</td>
</tr>
</tbody>
</table>
Research Article

Table 2: Measurements of microsporidial spores in various animals species

<table>
<thead>
<tr>
<th>Animals</th>
<th>Number of positive cases</th>
<th>Length</th>
<th>Width</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean ± SE</td>
<td>range</td>
</tr>
<tr>
<td>Cattle</td>
<td>12</td>
<td>2.2±0.09</td>
<td>1.9-2.4</td>
</tr>
<tr>
<td>Sheep</td>
<td>7</td>
<td>2.1±0.03</td>
<td>1.8-2.3</td>
</tr>
<tr>
<td>Horses</td>
<td>14</td>
<td>2.1±0.04</td>
<td>1.8-2.4</td>
</tr>
<tr>
<td>Donkeys</td>
<td>9</td>
<td>2.1±0.04</td>
<td>1.9-2.3</td>
</tr>
<tr>
<td>Cats</td>
<td>5</td>
<td>2.3±0.05</td>
<td>1.9-2.4</td>
</tr>
<tr>
<td>Dogs</td>
<td>11</td>
<td>2.2±0.08</td>
<td>1.7-2.5</td>
</tr>
<tr>
<td>Rabbits</td>
<td>41</td>
<td>2.1±0.04</td>
<td>1.9-2.3</td>
</tr>
<tr>
<td>Mice</td>
<td>12</td>
<td>2.0±0.03</td>
<td>1.7-2.4</td>
</tr>
<tr>
<td>Rats</td>
<td>15</td>
<td>2.1±0.10</td>
<td>1.8-2.4</td>
</tr>
<tr>
<td>Pigeons</td>
<td>5</td>
<td>1.9±0.07</td>
<td>1.7-2.1</td>
</tr>
<tr>
<td>Chickens</td>
<td>7</td>
<td>1.7±0.09</td>
<td>1.5-1.9</td>
</tr>
<tr>
<td>Zebra Finches</td>
<td>4</td>
<td>1.7±0.03</td>
<td>1.6-2.0</td>
</tr>
<tr>
<td>Fish</td>
<td>15</td>
<td>2.0±0.05</td>
<td>1.9-2.4</td>
</tr>
</tbody>
</table>

Figure 1: Microsporidial spores in fecal specimen from rabbit with spontaneous microsporidiosis A- Modified chromotrope Ryan blue stain, X1000. B-Calcafluor white, X1000

Histopathological lesions that were found in the cerebral tissue of rabbits included perivascular alterations ranging from discreet changes to non – suppurative, focal or multifocal granulomatos (meningo-) encephalitis (Figure 2A and 2B). Granulomas contain lymphocytes, plasma cells and glial cells and are often necrotic in the center. The most commonly affected areas were in the cerebrum (cortex and medulla) and to a lesser extent in the cerebellum. Involvement of the leptomeninges was very common. Lesions in renal tissue included focal granulomatos nephritis, primarily with mononuclear cells. Severe grades of chronic interstitial nephritis were also seen (Figure 2C). The parasites were seen in the tubular epithelium and in the endothelium of blood capillaries within the interstitium. Infiltration of mononuclear cells was found around the capillaries in a fashion similar to that of periarteritis nodosa. In the liver, non – suppurative portal infiltration and heavy infiltration of mononuclear cells around arteries in the portal area were found (Figure 2D). Most of the rabbits displayed non – suppurative inflammatory infiltrations in the lung. Other pulmonary lesions included fibrinoid change and thickening of the small blood vessels and narrowing of these vessels (Figure 2E). Additionally, perivascular cuffings with lymphocytic – plasmacytic cells in the interalveolar septa
were evident. Parasites were found in the interstitium of the lung and within the alveolar macrophages. Intestinal tissues showed the presence of parasites within enterocytes mainly at the tips of the villi, and some in enterocytes at the sides of the villi (Figure 2F). Histopathological lesions in the intestines included blunt villi, thickening of the mucosa, and infiltrations of inflammatory mononuclear cells in submucosa, lamina properia and serosa. In two rabbits, necrosis of the tips of the villi and sloughing of the necrotic material were found. Inflammations in other organs were rare but lymphoid hyperplasia of the white pulp of the spleen was observed in most rabbits.

Figure 2: Tissue sections from rabbit with spontaneous microsporidiosis, hematoxylin and eosin stain. A- Vasculitis with heavy infiltration of mononuclear cells in the cerebrum, X400. B- Granuloma in the cerebral cortex, X400. C- Focal interstitial nephritis in the kidney, X400. D- Granulomatous inflammation in the portal area of liver, X400. E. Emphysema, vasculitis, and thickening of blood vessels in the lung, X40. F- Microsporidial spores in enterocytes (arrow), X1000

In mice, the histopathological changes were similar to those seen in rabbits but they were less severe. The cerebral tissue showed discrete foci of gliosis, vasculitis in the leptomeninges, and infiltrations of mononuclear cells in the cerebral cortex (Figure 3A). Renal tissues displayed increased cellularity of the glomeruli, focal infiltrations of mononuclear cells in the interstitium (focal interstitial nephritis),
and presence of parasites within tubular epithelial cells and endothelial cells in the interstitium. Sections of the liver showed foci of granulomatous inflammation, and vasculitis and cholangitis within the portal areas (Figure 3B). Pulmonary lesions included thickening of the interalveolar septa due to heavy infiltration of mononuclear cells and thickening of blood vessels due to proliferation of smooth muscle cells within the tunica media. Intestinal tissues displayed the presence of parasites in enterocytes within the villi. Two morphological forms of the parasite were seen, one in parasitophorous vacuoles and the second free in cytoplasm of the enterocytes (Figure 3C and 3D). Necrosis of the tips of some of the intestinal villi and infiltrations of mononuclear cells in the mucosa, submucosa and lamina propria were evident. Hyperplasia of the lymphoid nodules (Peyer's patches) was seen. Lymphoid hyperplasia of the white pulp of the spleen was noted (Figure 3E).

Figure 3: Tissue sections from mice with spontaneous microsporidiosis, hematoxylin and eosin stain. A- Focal infiltration of mononuclear cells in the brain, X100. B- Granuloma within the portal area of the liver, X400. C- Microsporidial spores in parasitophorous vacuoles within enterocytes (arrow), X1000. D- Microsporidial spores in the enterocytes, X1000. E. Lymphoid hyperplasia of the white pulp of the spleen and diffuse accumulation of lymphocytes in the paracortical zones, X100
Histopathological lesions were not encountered in the brain of rats. Renal tissues showed increased cellularity of the glomeruli, focal interstitial nephritis, and the presence of parasites in the renal tubular epithelium (Figure 4A). Focal infiltrations of inflammatory mononuclear cells (particularly lymphocytes) were found in hepatic parenchyma as well as vasculitis and cholangitis in portal areas (Figure 4B). Pulmonary tissues demonstrated thickening of interalveolar septa due to infiltrations of mononuclear cells. Sections of the intestines exhibited a constant lesion which was in the form of serositis accompanied by increased numbers of the mesothelial cells (Figure 4C). Lymphatic enteritis was seen in two of the rats. The parasites were found within parasitophorous vacuoles in enterocytes of the intestinal villi (Figure 4D). Lymphoid hyperplasia of the germinative centers within the white pulp of the spleen was seen as well as infiltration of large numbers of lymphocytes in the paracortical areas. The pancreatic tissue showed vasculitis and infiltration of inflammatory mononuclear cells in the pancreatic parenchyma.

Figure 4: Tissue sections from rat with spontaneous microsporidiosis, hematoxylin and eosin stain. A- Focal interstitial nephritis in the kidney, X100. B-Focal infiltration of inflammatory mononuclear cells around blood vessel and bile duct within the portal area of the liver, X400. C- Serositis and proliferation of mesothelial cells of the intestine, X400. D- Microsporidial spores in parasitophorous vacuole in enterocytes (arrow), X400

DISCUSSION

Results of the present study indicated for the first time that Microsporidial infection is common in domestic and laboratory animals in Iraq. As expected, the highest prevalence rate was in rabbits (27%). This prevalence rate is comparable to that reported serologically in many other geographic locations (Kunzel and Joachim, 2010). Seroprevalence rates have been reported to be high in pet rabbit populations with 37% to 68% of the population (Harcourt – Brown and Holloway, 2003; Ebrecht and Müller, 2004). Prevalence of the parasite is lower in wild rabbit populations, probably due to the lower animal density (Chalupsky et al., 1990). *Encephalitozoon cuniculi* is the only Microsporidial organism
known to cause spontaneous disease in rabbits. Additionally, attempts to experimentally infect rabbits with *E. intestinalis*, *E. hellem*, and *Enterocytozoon bieneusi* have been unsuccessful (Wasson and Peper, 2000). Therefore, it could be assumed that the cause of spontaneous microsporidiosis in rabbits reported in this study is caused by *E. cuniculi*. This microsporidian species has been reported for the first time in a colony of laboratory rabbits in 1922 as a cause of vestibular disease (Jeklova et al., 2010). It has been considered zoonotic pathogen and described as an opportunistic parasite in immunocompromised human beings (Mathis et al., 2005). *E. cuniculi* constitutes the most extensively studied mammalian microsporidium, and spontaneous infections with this parasite have been documented in rabbits, mice, rats, muskrats, guinea pigs, hamsters, ground shrews, goats, sheep, pigs, horses, domestic dogs, wild and captive foxes, domestic cats, a variety of exotic carnivores, and in non – human primates (Didier, 2005; Ozkan et al., 2011). Three strains of *E. cuniculi* have been identified genetically. Strain I was first isolated from rabbits, strain II from rodents, and strain III from dogs, but these strains can infect other hosts as well (Ozkan et al., 2011; Xiao et al., 2001; Didier et al., 1995).

Histopathological lesions of natural Microsporidial infections that are described in the present study are similar to those reported by others (Kunzel and Joachim, 2010; Csokai et al., 2009a; Csokai et al., 2009b; Kunzel et al., 2008; Valencakova et al., 2008; Wasson and Peper, 2000; Fuentealba et al., 1992). They are also similar to those described in rabbits infected experimentally with a rabbit isolate of *E. cuniculi* (Shadduck et al., 1979). However, in experimentally – induced encephalitozoonosis the lesions were confined to the cerebrum, meninges, and kidneys. At 6 weeks, focal gliosis and a few scattered lymphocytes were seen in the cerebral cortex. Brain lesions were more pronounced at 8 and 10 weeks after inoculation and early granuloma formation characterized by focal gliosis, lymphocytes, plasma cells, and epithelioid cells were noted. In lesions that were in the vicinity of blood vessels, proliferation of adventitial cells was evident. Focal scattered lymphocytic meningitis was found in all animals with brain lesions. Six weeks after inoculation, scattered foci of interstitial nephritis composed of lymphocytes, plasma cells, and macrophages were present. More severe lesions were found at 8 and 10 weeks and were characterized by infiltration of lymphocytes, plasma cells, macrophages, proliferation of fibroblasts, and tubular dilatation. Cloudy swelling of some tubular epithelial cells was also found. Lesions were not observed in the spleen or liver. Lesions of the brain and kidneys have been considered indicative of *E. cuniculi* infection when non – suppurrative inflammatory changes in the brain and interstitial nephritis were found (Csokai et al., 2009b). It has been pointed out that in naturally infected rabbits, spore can be detected slightly more frequently in the kidneys than in the brain (Csokai et al., 2009a, b). In comparison, *E. cuniculi* were found in the tubular epithelial cells and lumen in the area of interstitial nephritis in experimentally infected rabbits. Attempts to demonstrate the organisms in the brains of experimentally infected rabbits were unsuccessful (Shadduck et al., 1979). Detection of the spores in tissue sections stained with hematoxyline – eosin is difficult and therefore special stains such as chromotrophic staining (e.g. acid – fast trichrome or Ziehl – Neelsen), immunofluorescence or chromofluorescence should be used.

In this study, natural microsporidial infection was common in rats with a prevalence rate of 15.8%. Only few reports have been found in the literature describing natural or experimental infection with *E. cuniculi* in rats (Wasson and Peper, 2000; Shadduck et al., 1979). Infections with other microsporidia have not been reported in rats (Wasson and Peper, 2000) and therefore it could be assumed that the species reported in rats in this study is *E. cuniculi*. In the present study, minimal histopathological changes were seen in the brain but extensive lesions including focal interstitial nephritis, focal non – suppurrative hepatitis, and non – suppurrative vasculitis and cholangitis in the portal areas, inflammatory infiltration in the lung parenchyma, serositis of the intestine, and lymphoid hyperplasia of the germinative centers of the white pulp of the spleen were seen. The parasites were found in the renal tubular epithilium and in the enterocytes of the intestinal villi. These histopathological lesions are similar to those reported in rats experimentally infected with a rabbit isolate of *E. cuniculi* (Shadduck et al., 1979). In experimentally infected rats, the lesions were found in the gray matter of the cerebral cortex of two rats 10 weeks after inoculation. Discrete lesions consisted of glial cells, lymphocytes and plasma cells were seen. Many glial cells were edematous and moderate infiltration of lymphocytes around larger meningeal blood vessels was observed in the vicinity of the brain lesions. Lesions were not observed in the spleen, liver, or kidneys (Shadduck et al., 1979).
In the present study, prevalence rate of Microsporidial infection in laboratory mice was 10.1%. Spontaneous infections with *E. intestinalis*, *E. hellem*, or *Enterocytozoon bieneusi* have not been described in mice (Wasson and Peper, 2000). Therefore, it could be assumed that the species reported in mice in this study is *E. cuniculi*. As in rabbits, *E. cuniculi* infection of immunocomponent mice is usually subclinical and the lesions composed of mononuclear inflammatory foci in the liver, lungs, and brain have been attributed to subclinical *E. cuniculi* infection (Wasson and Peper, 2000). Athymic nude or severe combined immunodeficient (SCID) mice infected experimentally with *E. cuniculi* demonstrate infection of the liver, spleen, pancreas, lungs, hearts, kidneys, brain, peritoneum, and pleura and the infection is characterized by random, multifocal milliary granulomas with various amounts of cell debris and suppurative necrosis. The parasites were found free within foci of inflammation or intracellularly in macrophages, epithelium, or endothelium. In mice that were inoculated orally there were focal ulcerative intestinal mucosal lesions that often extend to the submucosa and tunica muscularis (Didier et al., 1994; Hermanek et al., 1993; Koudela et al., 1993).

Shadduck et al., (1979) described the histopathological lesions seen in experimentally – induced encephalitozoonosis in mice using a rabbit isolate of *E. cuniculi*. One mouse showed small glial nodule with few lymphocytes in the gray matter of the cerebral cortex, two weeks following intracerebral inoculation. A more severe, discrete lesion, characterized by focal gliosis, lymphocytes and plasma cells, and adjacent lymphocytic perivascular cuffing was seen at 4 weeks. In all cases with lesions of encephalitozoonosis, scattered lymphocytic meningitis was present. Necrotizing hepatitis was found in mice with brain lesions. Randomly scattered lesions composed of neutrophils, lymphocytes, plasma cells, and liver parenchymal cells undergoing coagulative necrosis were noted. Reticuloendothelial cell hyperplasia with minimum reaction in the splenic white pulp was seen. No lesions were found in the kidneys (Shadduck et al., 1979).

In the present study, among domestic animals, the highest prevalence rate of microsporidian infection was in horses (14.4%). This rate of prevalence is lower than that reported in horses in Czech Republic (24.2%) (Wagnerova et al., 2012). *E. cuniculi* is considered the most frequent microsporidium found in horses (Wagnerova et al., 2013; Wagnerova et al., 2012; Santin et al., 2010). In dogs, the prevalence rate of microsporidiosis was 13.8%. This prevalence in dogs is similar to that reported in dogs in Spain (11.7%) (Lores et al., 2002) and lower than that reported in Iran (31%) (Jamshidi et al., 2012) and Slovakia (37.8%) (Halanova et al., 2003). In fish (the common carp *Cyprinus carpio* L) in Iraq the prevalence of microsporidian infection was found to be 12.4%. For comparison, prevalence of microsporidia species in the Red Sea fish (*Sauridatumbil*) has been reported to be 45.8% (Abdel – Gaffar et al., 2012). In cattle, the prevalence of Microsporidial infection was 10.4%. In USA, one survey found that the prevalence of microsporidian species in cattle was 5.6% in Florida, 14.3% in Maryland, 3.6% in Michigan, 12.5% in New York, 7.7% in North Carolina, 13.6% in Pennsylvania, and 24.3% in Virginia (Sulaiman et al., 2004). In the present study, the prevalence of Microsporidial infection was 9.9% in chickens and 9.8% in zebra finches. In comparison, the prevalence of microsporidiosis was 24.5% in birds in Brazil (Lallo et al., 2012) and 25% in lovebirds (Peach – faced lovebirds, masked lovebirds, and Fischer's lovebirds) in Texas, USA (Barton et al., 2003). Prevalence of Microsporidial infection in cats in this study was 9.4%. This prevalence rate is higher than that reported in cats in Virginia, USA (Hsu et al., 2011) and in cats in Iran (7.5%) (Jamshidi et al., 2012) and lower than that reported in cats in Thailand (31.3%) (Mori et al., 2013). In donkeys, the prevalence of Microsporidial infection was 7.7%. A similar low prevalence rate of Microsporidial infection was found in sheep (6.9%). These findings were difficult to evaluate in view of absence of similar studies. However, in Spain the prevalence of Microsporidial infection in goats was reported to be 14.2%. In the present study, the least frequency of Microsporidial infection (6%) was found in pigeons. In Brazil, the prevalence of Microsporidial infection in pigeons was 31.1% (Lallo et al., 2012). Haro et al., (2005) reported that the prevalence of microsporidia pigeons from urban parks to be 29.0%. In Amsterdam, the Netherlands, prevalence of microsporidia in pigeons was reported to be 11% (Bart et al., 2008).

Conclusion

Results of this study suggest that spontaneous Microsporidial infection is fairly common in domestic and laboratory animals as well as in fish and birds from Nineveh Province, Iraq. These animals may
serve as important source of spore contamination for opportunistic infections in humans. Furthermore, pathological lesions that were seen in spontaneous Microsporidial infection involved many organ systems indicating a hematogenous spread. Finally, further studies are needed to elucidate the occurrence of Microsporidial infection in humans and to ascertain the entity of the various microsporidian species.

ACKNOWLEDGMENT
Research was supported by the College of Veterinary Medicine, University of Mosul, Mosul, Iraq.

REFERENCES

Research Article

Research Article

Khan IA, Schwartzman JD, Kasper LH and Moretto M (1999). CD8+ CTLs are essential for protective immunity against *Encephalitozoon cuniculi* infection. *Journal of Immunology* 162 6086-6091.

Lallo MA, Calabria P and Milanelo L (2012). Encephalitozoon and Enterocytozoon (microsporidia) spores in stool from pigeons and exotic birds, Microsporidian in birds. *Veterinary Parasitology* 190 418-422.

Research Article

Rodriguez – Tovar LE, Speare DJ and Frederick Markham RJ (2011). Fish microsporidia immune response, immunomodulation and vaccination. Fish and Shellfish Immunology 30 999-1006.

