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ABSTRACT 

The respiratory protein haemoglobin and its different phenotypes are considered to be idle genetic 

markers and one of the most sensitive and informative molecule seen in primate blood. One of the normal 

phenotype, Foetal haemoglobin (Hb F) is the principal haemoglobin produced by the fetus but can 

transport oxygen efficiently even in a low oxygen environment. Contradictory to its expression in foetal 

stage, the expression is noticed to be drastically high along with some haemoglobin disorders in 

adulthood. The persistence of foetal haemoglobin in adult life, Hereditary Persistence of Foetal 

Haemoglobin (HPFH) projected with clinical interest due to disease ameliorating potential against sickle 

cell anaemia and different forms of thalassemias. The gamma gene expressions are controlled by 

transcription factors, chromatin modifiers, co-activators, beta gene repressors, regulatory molecules and 

micro RNAs (miRNAs) which are playing important role in globin gene expression. These regulatory 

molecules binds with locus control region, enhancers, promoters and different regulatory domains of beta 

globin gene cluster situated at chromosome 11. Induction of foetal haemoglobin is safe and sometimes it 

is possible to achieve a complete switching over from faulty adult haemoglobin to normal and competent 

foetal haemoglobin with an assumption that it can be counteract for therapeutic benefits. Discover 

pharmacologics that could elevate foetal haemoglobin with minimum toxicity profiles since he 

genotoxicity of demethylating agents are also a concern. 
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INTRODUCTION 

Haemoglobin is the oxygen-binding protein found in almost all vertebrates as well as certain 

invertebrates. This respiratory protein is considered to be an idle genetic marker (Ramesh and Veerraju, 

1999) and one of the most sensitive and informative molecule seen in primate blood (Ehabal and Bansal, 

2005). This respiratory protein was first observed in the crystalline form by Friedrich Ludwig Hunefeld, 

in 1840 (Giege, 2013). Haemoglobin carries a prosthetic haeme group (iron proto-porphyrin IX) 

associated with four globular polypeptide chains (Hori and Kitagawa, 1980). The globin tertiary structure 

comprises a helical structure joined together by non-helical segments. Four such globin chains are 

arranged together, giving rise to the spherical quaternary structure of haemoglobin. 

The genes responsible for the production polypeptides of haemoglobin are situated in two different 

chromosomes. The locations are broadly named as α globin gene locus and β globin gene locus. Human 

alpha globin gene locus is situated at the short arm of 16
th
 chromosome (16p13.3) and having genes for α 

polypeptides and α like polypeptides. The cluster also consists of zeta (ζ), psi-zeta (ψζ), psi-alpha-1(ψα1), 

alpha-2(α2) and alpha-1(α1) from 5’end to 3’ end respectively (Forget and Hardison, 2009). The human 

beta globin gene is composed of five genes located on a short region of 11
th
 chromosome (11p15.5), 

which is responsible for the production of beta polypeptide and beta like polypeptides. In this cluster 

genes are aligned in the order of epsilon (ε), G-gamma (Gγ), A-gamma (Aγ), Psi-beta-1 (ψβ-1), delta (δ) 

and beta (β) respectively from 5’ end to 3’ end (Levings and Bungert, 2002). 

Expression of genes present in the beta globin locus is controlled differentially during the various stages 

of development. This regulation is leaded by remote regulatory sites in the particular gene loci. Such 
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types of regulatory sequence in the β-globin locus are collectively referred to as locus control region 

(LCR) (Li and Starnatoyannopoulos, 1994). The LCR of β globin gene locus consists of five 

hypersensitive sites (HS). They are scattered in between 6 kb and 20 kb 5’ to the globin gene. Another 

hypersensitive site is present approximately 20 kb 3’ to the globin gene. It is thought to be spotting the 3’ 

boundary of the globin gene (Stamatoyannopoulos and Grosveld, 2001). The LCR is significant in globin 

gene expression. By acting as a powerful enhancer it helps to maintain an open chromatin state during 

transcription of globin gene (Forrester et al., 1990). During each stage of development, it controls the 

production of relevant beta polypeptide by activating corresponding genes in β globin gene cluster.  

Various genes in β globin cluster are arranged in such a manner that embryonic and foetal globin genes 

are nearby and adult globin genes are distant from the LCR (Van der Ploegh et al, 1980). During globin 

gene switching over, the LCR changes its binding with embryonic genes to adult β-globin genes in order 

to ensure their activation during adult life (Palstra et al., 2003). In addition to normal genes, there are 

numerous supplementary genes-like structures are present in both α and β globin gene cluster. Their 

sequence homology and exon-intron structures are similar to that of actively expressed globin genes. 

They are commonly known as pseudo-genes (ψ) (Zhang and Gerstein, 2004). They are present in between 

normal genes and will not express at any stage of development.  

On the either side of the coding regions of globin gene, it is interrupted by stretches of non coding DNA 

sequences called intervening sequences (IVS) or introns (Tilghman et al., 1978). In the case of β-like 

globin genes, introns are spanning between the codons 30 and 31 and codons 104 and 105 at the two ends 

respectively. In the family of α-globin gene, IVS interrupt exon sequence between the codons 31 and 32 

and codons 99 and 100 respectively (Forget and Hardison, 2009). Even though the particular position of 

codon numbers at which the interruption happens, it vary between the α- and β-like globin genes.  The 

intervening sequence is seen specifically at the same position in the primary sequence of α. In both α- and 

β-globin genes the first intervening sequence (IVS-1) is shorter than the second intervening sequence 

(IVS-2).  However, the IVS-2 present in human β-globin gene is larger than that of α and γ -globin gene. 

For proper splicing, the di-nucleotides GT and AG are at the 5’ and 3’ ends respectively of the intron ( 

Burset et al., 2000). Any type of changes in the precise sites of these nucleotide leads to abnormal 

haemoglobin production (Forget and Hardison, 2009). 

Different types of normal haemoglobins are produced at different stages of human development like 

embryonic, foetal and adult. Each of this haemoglobin consists of any of the two polypeptides produced 

from β gene locus and two polypeptides produced from the duplicated alpha genes of alpha gene cluster. 

Production of alpha polypeptide is always constant throughout the development except embryonic 

haemoglobins. But, the production of beta locus polypeptide will vary from time to time (Bonavetura and 

Riggs, 1968). Haemoglobin produced during the embryonic stage (first few months of life) is termed as 

embryonic haemoglobin. There are Hb Portland-1 (ζ2γ2), Hb Gower-1 (ζ2ε2), and Hb Gower-2 (α2ε2) (He 

and Russell, 2001).  After a few weeks of development embryonic haemoglobin production ceases and 

foetal haemoglobin (Hb F) begins to produce. It is composed of two alpha polypeptides and two gamma 

polypeptides (α2γ2). Before birth, the foetal haemoglobin level declines and adult haemoglobin (Hb A) 

starts to produce in low quantity as an adaptation. Adult haemoglobin is made up of alpha polypeptides 

and beta polypeptides (α2β2). After birth which extends its production to 95-98 %. Hb A2 is a second type 

of adult haemoglobin produced in smaller quantities, which is composed of alpha and delta polypeptides 

(α2δ2).  

All the haemoglobin types are showing some sort of differences between each other. These variations are 

specifically helpful and advantageous during specific developmental stages. Even though, these 

haemoglobins have similarity in their structure, they differ in O2 affinity (Hoffman and Brittain, 1996 ; He 

and Russell, 2001). Haemoglobin switching over takes place for two times in the life time of man, 

embryonic haemoglobin to foetal haemoglobin and then to adult haemoglobin. There are a wide variety of 

haemoglobin variants besides the normal ones, which are synthesized on various reasons.  Changes in the 

genetic makeover of specific genes and the subsequent changes or alterations in the amino acid sequence 
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are the key factors behind the production of abnormal haemoglobin. Hb S, Hb E, Hb D, Hb Q, Hb H and 

Hb Lepore etc are the most prevalent and altered Hb variants in childhood as well as in adulthood 

(Bonavetura and Riggs, 1968).  Even though Foetal haemoglobin (Hb F) is a type of normal haemoglobin 

variant, it is present in some individuals in their adulthood in high percentages (Edoh et al., 2006). Hb F 

seems to be associated with certain haemoglobin disorders (Thein and Craig, 1998) and its elevation is of 

high clinical significance.  

Foetal Haemoglobin 

Haemoglobin F (Hb F) is the principal haemoglobin produced by the fetus but can transport 

oxygen efficiently even in a low oxygen environment. The nearly identical genes of β globin gene cluster, 

HBG1 (Aγ) and HBG2 (Gγ) encode the γ globin polypeptide chains of foetal haemoglobin. The only 

difference between Aγ and Gγ is that, which contain glycine or alanine residue at 136
th
 of γ polypeptide 

respectively (Adachi et al, 1990). On 6 to 12 month of age foetal haemoglobin is almost completely 

replaced by adult haemoglobin (HbA0), later on it is measured to be less than 1% of total haemoglobin 

(Weatherall and Clegg, 1981). Hb F may constitute up to 90% of the total haemoglobin in some 

haemoglobin disorders like beta-thalassemia major or other combinations of beta thalassemia and foetal 

haemoglobin mutations. Productions of various haemoglobins are transcriptionally regulated according to 

the necessity. The expressions are controlled by many transcription factors, which are playing important 

role in globin gene expression by binding with locus control region and promoter regions of the gene. 

These transcription factors are essential for making interaction and forming stability between LCR and its 

corresponding gene (Drissen et al., 2004; Vakoc et al., 2005; Song et al., 2007).  

Hereditary Persistence of Foetal Haemoglobin (HPFH) 

Hereditary Persistence of Foetal Haemoglobin (HPFH) is a clinical condition characterized by the 

persistence of high percentage of foetal haemoglobin in adulthood. HPFH was first recognized by 

Edington and Leahmann in 1955. In HPFH, it is suggested that the synthesis of γ- globin chain fails to 

switch over to β-chain. Though deletional as well as non-deletional types of HPFH have been identified, 

the exact regulatory mechanism is unknown.  

In case of non-deletional point mutations, majority are in the promoter region of the gamma globin gene. 

The non-deletional HPFH is considered to be the result of mutations occurring in the promoter region of 

HBG and Single Nucleotide Polymorphisms (SNPs) in the Quantitative Trait Locus (QTLs). Mutations 

responsible for non-deletion HPFH are point mutations, which are usually formed at three regions 

surrounding -114, -175, and -200 in the 5’ promoter regions of both HBG1 and HBG2 (Liu et al., 2005 ). 

The nucleotide sequences surrounding -200 regions have been revealed to be a binding site for different 

types of erythroid transcription factors (Steinberg et al., 2001).  Similarly, a mutation near -175 position 

prevents binding of OCT-1 and GATA-1; mutation in −117 (promoter region) affects the regulatory 

CCAAT box and -114 mutation prevents binding of NF-E3 ( an erythroid specific factor), CP1 and CP2 ( 

ubiquitous trans-acting factors) (Liu et al., 2005).  Genetic studies conducted in patients with sickle cell 

anaemia and β-thalassemia and in healthy adults have identified three major Quantitative Trait Loci 

(QTL) such as Xmn1-HBG2, HBS1L-MYB intergenic region on chromosome 6q23 and BCL11A on 

chromosome 2p16.  These three QTL are playing a major role in the variation and the production of 20-

50% of foetal haemoglobin.  

Deletional mutations are thought to interfere with the interactions between various transcription factors 

and the promoter region of corresponding genes (Forget, 1998). To date, eight types of HPFH due to 

deletions have been reported. These deletions are of variable size and are at different positions in the beta 

globin gene cluster. They are HPFH-1 (Black) (Adams et al., 1985; Collins et al., 1987; Feingold and 

Forget, 1989),  HPFH-2 (Ghanaian)( Collins et al., 1987), HPFH-3 (Asian Indian)(Henthorn et al., 1986; 

Mayuranathan et al., 2014), HPFH-4 (Italian)( Saglio et al., 1986; Huisman et al., 1997), HPFH-5 

(Italian)(Camaschella et al., 1990), HPFH-6 (Vietnamese)(Kosteas et al., 1997; Panyasai et al., 2004), 

HPFH-7 (Kenyan)(Huisman, 1972) and SEA-HPFH (Southeast Asian) (Bhardwaj and McCabe, 2005; 

http://journal.frontiersin.org/article/10.3389/fgene.2012.00217/full#B28
http://journal.frontiersin.org/article/10.3389/fgene.2012.00217/full#B125
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Changsri et al., 2006). In addition Mayuranathan et al (2014) identified two novel HPFH mutations, 

49.98kb (HPFH-9) and 86.7kb (HPFH-10) from Indian population.  

Indian HPFH or HPFH-3 is caused as a result of non-homologous recombination events (Henthorn et al., 

1986). In this case, it removes 48.5 kb DNA from the 5’ end of the ψβ gene to a region 30 kb downstream 

of the beta gene. The 5’ deletion breakpoint is situated in the Alu family repeat 3’ to the Aγ globin gene 

and 3’ break point is situated within a region that contains a portion of  l1 (Kpn I) repeat. There is a 

palindrome sequence with 160 bp and a set of 41 bp direct repeats that are found elsewhere in human 

genome (Mayuranathan et al., 2014). An average of 65: 35 %  Gγ:Aγ ratio is seen in Indian type of 

HPFH. The Hb F value is reported to be around 22-30 % in heterozygotes. 

HPFH mutations have got clinical interest in recent times, because the resulting elevation of Hb F levels 

can help to reduce disease severity of SCD or β-thalassemia. Foetal haemoglobin is considered as a strong 

genetic modulator (Stamatoyannopoulos et al., 1975), as it can decrease the disease severity by disrupting 

the polymerization of deoxy-Hb-S (Goldberg et al., 1990). It is revealed that both the Gγ
 
and Aγ globins 

have similar depolymerizing effects on Hb S (Adachi et al., 1990).  In HPFH, foetal haemoglobin is 

producing at high percentages in almost all red cells and thereby protecting all red cells from sickling. In 

the absence of HPFH, heterogeneous distribution of foetal haemoglobin is observed in patients with 

higher levels of Hb F; thereby half of the cells became sickle shaped and occlude with in 

microcirculation. Besides that, the deformed cells would block natural flow of normal cells with high Hb 

F. In such situation the patient may experience clinical manifestations of sickle cell disease. It can be 

concluded that persistence of foetal haemoglobin offer protection from sickle cell disease or thalassemia.   

Regulation of Foetal Haemoglobin  

In order to explain the elevated levels of foetal haemoglobin, three feasible mechanisms have been 

proposed by Steinberg such as mutation occurring at regulatory sequences, juxtaposition of enhancers, 

interactions between LCR and HBG as a consequence (Steinberg et al., 2001). The persistent production 

of foetal haemoglobin and globin gene expression is controlled by different tissue restricted erythroid 

factors and ubiquitous transcription factors. Peterson (2003) explained that the cis acting elements present 

in the beta globin gene locus interacting with trans acting proteins like transcription factors, chromatin 

modifiers, co-activators and repressors. These interactions play a pubertal role in the globin gene 

switching during development. Transcriptional factors such as GATA-1(Katsumura et al., 2017), FOG 

(Tsang et al., 1997), SP1 (Feng et al., 2005; Hu et al., 2007),  Sox6 (Yi et al., 2006; Xu et al, 2010), 

NFE2 (Ney et al., 1990; Pace and Zein, 2005; Kim et al., 2016), NFE3 (Filipe et al., 1999), EKLF , 

KLF3/BKLF (Funnell et al., 2012) TR2, TR4 (Tanabe et al., 2007) and TAL1 (Yun et al., 2014; Kim et al., 

2016) are controlling foetal haemoglobin and maintaining haemoglobin homeostasis in blood stream. 

The non-coding RNAs like microRNAs (miRNA) are regulating the globin gene expression at the 

transcriptional level (Azzouzi et al., 2011; Sankaran et al., 2011; Bianchi et al., 2009; Bianchi et al., 

2012; Ma et al., 2013). The importance of micro RNA is that it can target more than one mRNA, where as 

a single mRNA can bind with more than one micro RNA through its specific binding sites at the 3’UTRs.  

Micro RNA, miR-210 in differentiating erythroid cells can increase the expression of gamma globin 

genes. The mode of expression is found to be in a time dependent and dose dependent manner along with 

elevated foetal haemoglobin in differentiating erythroid cell lines (Bianchi et al., 2009). The kit receptor 

complex miR-221-222 is reported to be involved in the haemoglobin switching of humans (Gabbianelli et 

al., 2010) through kit receptors. Decline in miR 221-222 unblocks kit protein production at mRNA level 

and prevent Hb F synthesis by influencing early embryoblast. Globin gene expression can also be 

controlled by another micro RNA, miR-96 by binding with the CDS region (Azzouzi et al., 2011). In 

people with trisomy 13, two micro RNAs miR-15a and miR-16-1 are playing a vital role for the up 

regulation of foetal haemoglobin (Sankaran et al., 2011).  

Two important miRNAs, miR-23 and miR-27 can interact with beta globin negative regulators like KLF3 

and SP1 and can enhance the gene expression by extending a synergistic role. During erythropoiesis 

KLF3 binds with its target site, the CACCC sequence in the promoter region of miR-23a cluster 
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composed of miR23a, 27a and 24-2. This interaction form a positive feedback loop to regulate the 

expression of beta like globin genes and the miRNA cluster during erythropoiesis in the K562 cells. 

Conversely, KLF3 and SP1 protein levels were increased after endogenous miR-23a or miR-27a was 

blocked when using the corresponding miRNA inhibitors in K562 cells (Ma et al., 2013). 

Micro RNA-486-3p regulates BCL11A expression by interacting with the highly extended isoform of 

BCL11A 3′UTR. Over expression of miR-486-3p located on chromosome 8p11 within the Ankyrin-1 

(ANK1) gene in erythroid cells resulted in reduced BCL11A protein levels (Lulli et al., 2013). These 

findings indicate that miR-486-3p contributes to Hb F regulation by post-transcriptional inhibition of 

BCL11A expression during adult erythropoiesis. Micro RNA-34a can be used for the activation of foetal 

haemoglobin by the gene silencing of STAT- 3 (Ward et al., 2016). In 2009, observed a micro RNA, miR-

144 negatively controlling the expression of α globin by influencing an erythroid specific Kruppel-like 

transcription factor, KLFD (Fu et al., 2009; Saki et al., 2016). 

Foetal haemoglobin mediated therapy 

Modest induction of foetal haemoglobin is sufficient to ameliorate the disease severity of a major share of 

haemoglobin disorders. Induction of foetal haemoglobin is safe and sometimes it is possible to achieve a 

complete switching over from faulty adult haemoglobin to normal and competent foetal haemoglobin 

with an assumption that it can be counteract for therapeutic benefit (Bauer et al., 2012 ). 

Until 1970, there was no therapy for sickle cell diseases were reported (Powars et al., 1984; Platt et al., 

1991). Induction of Hb F in baboons by demethylation of DNA using 5-azacytadine has got attention in 

1980s (DeSimone et al., 1982; Ley et al., 1982; Sankaran et al., 2011). Induction of Hb F under altered 

cell kinetics and stress erythropoiesis may happen while demethylating  beta globin promoters (Ley et al., 

1984). Experts paved way to identify S phase inhibitors to discover pharmacologics that could elevate 

foetal haemoglobin with minimum toxicity profiles since he genotoxicity of demethylating agents are also 

a concern (Letvin et al., 1984; Platt et al., 1984). As a result of the combined efforts of scientific world, a 

new treatment strategy was documented with potential inducing agent hydroxy urea with substantial 

benefits in 1984 (Platt et al., 1984; Platt, 2008). 

After that many drugs including erythropoietin, butyrate and its analogues have been shown to induce Hb 

F production. But hydroxyl urea is observed to be more effective than others. Rochette et al., (1994) 

highlighted the efforts undertaken to find out ideal therapeutic drugs to increase Hb F levels with minimal 

toxicity in SCD or in thalasseamia patients. Hydroxy urea appeared to be most suited for clinical trials 

because of its ease of administration and relative safety (Charache et al., 1995). But, not all patients are 

sensitive in Hb F induction towards hydroxyurea (Saleh and Hillen, 1997). Since hydroxyl urea seems to 

be unexpressive in one third of population suffering from various haemoglobinopathies (Fathallah and 

Atweh, 2006).  The Multicenter studies on hydroxy urea in sickle cell anemia demonstrated the efficacy 

of hydroxyurea in reducing the rate of painful crises compared to placebo (Moore et al., 2000). Besides 

these hydroxy urea has of variable efficacy, requires careful monitoring with dose-limiting 

myelosuppression, and is of limited utility for beta thalassemia (Bauer et al., 2012). Rees and Brousse 

(2016) reported that it is widely using in USA, even though its prolonged safety is unknown. 

Numerous novel therapeutic approached against sickle cell anaemia and other haemoglobinopathies are 

under experimentation. Haley et al., (2003) studied the pharmacological elevation of Hb F and inhibition 

of Hb S polymerization due to elevated Hb F. In order to identify the Hb F inducing agents in adults they 

performed one screening approach based on induction of γ-globin gene expression in erythroid cells. 

Through their screening, they successfully identified active and potential therapeutic compounds against 

for sickle cell anemia from defined chemicals and fungal extracts. 

A renewed and novel interest has been put forward by the scientific world to inhibit DNA methylation 

through various inhibitors to activate gene of interest (Fathallah and Atweh, 2006). Poor comprehension 

of the molecular mechanisms operative during the hemoglobin switch has limited the development of 

novel therapeutics. Upsurge of knowledge in the new era has reinvigorated the pursuit of rationally 

designed Hb F inducers (Bauer et al., 2012).  
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Robust synthesis of Hb F molecule is seen with down regulation of BCL11A in the primary adult 

erythroid cells. Manipulation of genes targeting BCL11A  is emerging as a therapeutic model in the 

treatment of haemoglobinopathies (Sankaran et al., 2008). Wilber et al., (2011) reported that knock down 

of BCL11A, SOX6 and FOP had given elevated production of foetal haemoglobin Hb F and FOP 

silencing was more effective than BCL11A. The identification of micro RNAs involved in erythroid 

differentiation and Hb F production opens new options and ideas for developing therapeutic approaches 

against β-thalassemia and sickle cell anemia (Finotti  et al., 2014). 

In 2016, Breda et al put forward a concept to activate gamma globin gene expression using a small gene 

construct of ZF protein and Ldb1 domain. They are arguing for the competence of this lentiviral mediated 

construct with less toxic effect while comparing with other herapeutic strategies (Breda et al., 2016). A 

study conducted in 2017 revealed that epigenetic modulators like micro RNAs can be used for the 

induction of foetal haemoglobin by acting at gamma globin gene. these non coding RNAs can replace 

conventional therapeutics like sodium butyrate without any complications (Tayebi et al., 2017). Role of 

micro RNA in hydroxy urea treated haemoglobinopathic cases also established with studies using 

erythroid progenitors (Hojjati et al., 2017). 
CRISER-Cas9 technique is the most advanced one in the manipulation of beta as well as gamma globin 

genes. The upstream transcriptional start site of gamma globin gene positioned at -115 and -200 bp are the 

binding of two gamma (γ) repressors, BCL11A and ZBTB7A (LRF) respectively. A few benign HPFH 

non deletional mutations targeting these specific sites can be incorporated in erythroid cells for the 

upregulation of gamma globin gene (Martyn et al., 2018).  

Indel generation within regulatory elements using TALEN(Transcriptional activator-like effector 

nucleases) and non homologous end joining (NHEJ) has proven the de-repression of foetal haemoglobin 

in human peripheral blood stem cells (hPBSCs). This type of gene editing can solve the problem of 

haemoglobinopathic patients and it sustains too when translated clinically (Lux et al., 2019).Induction of 

Hb F producing genes (γ genes) are upcoming trend in the future to cure various haemoglobin disorders 

(Mosaca et al., 2009; Ginder, 2015; Guda et al., 2015; Ngo et al., 2015; Sankaran and Weiss,  2015; 

Vinjamur et al., 2018). 

 

CONCLUSION 

Foetal haemoglobin can be considered as a boon for those who are suffering from haemoglobinopathies. 

Induction of Hb F producing genes are upcoming trend in the future to cure various haemoglobin 

disorders since it is sufficient to ameliorate the disease severity of a major share of haemoglobin 

disorders. Foetal haemoglobin is safe and sometimes it is possible to achieve a complete switching over 

from faulty adult haemoglobin to normal and competent foetal haemoglobin with an assumption that it 

can be counteract for therapeutic benefit. Strategies for the activation of cis and trans regulatory regions 

responsible for the Hb F elevation using different in vitro and in vivo bio modulators will be promising in 

the field of erythroid regulation of foetal gene.  
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