Research Article

CAUCHY MULTIPLICATION OF (M, λ_{n}) SUMMABLE SERIES IN ULTRAMETRIC FIELDS

*P. N. Natarajan
*Old No. 2/3, New No. 3/3, Second Main Road, R.A. Puram
Chennai 600 028, India
*Author for Correspondence

Abstract

In this paper, K denotes a complete, non-trivially valued, ultrametric field. Infinite matrices, sequences and series have entries in K . The main purpose of this paper is to prove a few theorems on the Cauchy multiplication of (M, λ_{n}) summable series in K. 2000 Mathematics Subject Classification: 40, 46.

Key Words: Ultrametric Field, $\left(M, \lambda_{n}\right)$ Method, Cauchy Multiplication

INTRODUCTION AND PRELIMINARIES

Throughout the present paper, K denotes a complete, non-trivially valued, ultrametric (or nonarchimedean) field. Infinite matrices, sequences and series have entries in K. In order to make the paper self-contained, we recall the following. Given an infinite matrix $A \equiv\left(a_{n k}\right), a_{n k} \in K, n, k=0,1,2, \ldots$ and a sequence $x=\left\{x_{k}\right\}, x_{k} \in K, k=0,1,2, \ldots$, by the A-transform of $x=\left\{x_{k}\right\}$, we mean the sequence $\mathrm{A}(\mathrm{x})=\left\{(\mathrm{Ax})_{\mathrm{n}}\right\}$,
$(A x)_{n}=\sum_{k=0}^{\infty} a_{n k} x_{k}, \quad n=0,1,2, \ldots$,
Where we assume that the series on the right converge. If $\lim _{n \rightarrow \infty}(A x)_{n}=\ell$, we say that $x=\left\{x_{k}\right\}$ is $A-$ summable or summable A to ℓ. If $\lim _{n \rightarrow \infty}(A x)_{n}=\ell$ whenever $\lim _{k \rightarrow \infty} x_{k}=\ell$, we say that A is regular. The following result, which gives a set of necessary and sufficient conditions for A to be regular in terms of the entries of the matrix, is well-known.
Theorem 1.1 (Monna (1963)) $\mathrm{A} \equiv\left(\mathrm{a}_{\mathrm{nk}}\right)$ is regular if and only if
(i) $\sup _{\mathrm{n}, \mathrm{k}}\left|\mathrm{a}_{\mathrm{nk}}\right|<\infty$;
(ii) $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{a}_{\mathrm{nk}}=0, \mathrm{k}=0,1,2, \ldots$;
and
(iii) $\lim _{\mathrm{n} \rightarrow \infty} \sum_{\mathrm{k}=0}^{\infty} \mathrm{a}_{\mathrm{nk}}=1$.

An infinite series $\sum_{\mathrm{k}=0}^{\infty} \mathrm{x}_{\mathrm{k}}$ is said to be A-summable to ℓ if $\left\{\mathrm{s}_{\mathrm{n}}\right\}$ is A-summable to ℓ where $\mathrm{s}_{\mathrm{n}}=\sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{x}_{\mathrm{k}}$, n $=0,1,2, \ldots$.
The ($\mathrm{M}, \lambda_{\mathrm{n}}$) method in K was introduced earlier by Natarajan (2003) and some of its properties were studied in (Natarajan (2003, 2012a, 2012b)).
Definition 1.2 Let $\left\{\lambda_{n}\right\}$ be a sequence in K such that $\lim _{n \rightarrow \infty} \lambda_{n}=0$. The $\left(M, \lambda_{n}\right)$ method is defined by the infinite matrix $\left(\mathrm{a}_{\mathrm{nk}}\right)$, where

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)
An Online International Journal Available at http://www.cibtech.org/jpms.htm
2013 Vol. 3 (1) January-March, pp.51-55/Natarajan

Research Article

$a_{n k}= \begin{cases}\lambda_{n-\mathrm{k}}, & \mathrm{k} \leq \mathrm{n} ; \\ 0, & \mathrm{k}>\mathrm{n} .\end{cases}$

Remark 1.3 In this context, we note that the $\left(M, \lambda_{n}\right)$ method reduces to the Y-method of Srinivasan (1965), when $K=Q_{p}$, the p-adic field for a prime $p, \lambda_{0}=\lambda_{1}=\frac{1}{2}$ and $\lambda_{n}=0$, $\mathrm{n} \geq 2$.
Theorem 1.4 (see Natarajan (2012b), Theorem 2.1). The (M, λ_{n}) method is regular if and only if $\sum_{n=0}^{\infty} \lambda_{n}=1$.

RESULTS

The following result is very useful in the sequel (see Natarajan (1978), Theorem 1).
Theorem 2.1 If $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=0$, then $\lim _{n \rightarrow \infty} c_{n}=0$. Further, if $\sum_{n=0}^{\infty} a_{n}, \sum_{n=0}^{\infty} b_{n}$ converge with sums A, B respectively, then $\sum_{n=0}^{\infty} c_{n}$ converges too with sum $A B$, where $c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}, n=0,1,2, \ldots$.
In this paper, we prove a few theorems on the Cauchy multiplication of ($\mathrm{M}, \lambda_{\mathrm{n}}$) summable series in K .
Theorem 2.2 If $a_{k}=o(1), k \rightarrow \infty$, i.e., $\lim _{k \rightarrow \infty} a_{k}=0$ and $\left\{b_{k}\right\}$ is $\left(M, \lambda_{n}\right)$ summable to B, then $\left\{c_{k}\right\}$ is $(M$,
λ_{n}) summable to AB , where $\mathrm{c}_{\mathrm{n}}=\sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}} \mathrm{b}_{\mathrm{n}-\mathrm{k}}, \mathrm{n}=0,1,2, \ldots$ and $\sum_{\mathrm{k}=0}^{\infty} \mathrm{a}_{\mathrm{k}}=\mathrm{A}$.
Proof. Let
$\mathrm{t}_{\mathrm{n}}=\lambda_{0} \mathrm{~b}_{\mathrm{n}}+\lambda_{1} \mathrm{~b}_{\mathrm{n}-1}+\cdots+\lambda_{\mathrm{n}} \mathrm{b}_{0}, \quad \mathrm{n}=0,1,2, \ldots$.
By hypothesis, $\lim _{n \rightarrow \infty} t_{n}=B$. Let
$\mathrm{u}_{\mathrm{n}}=\lambda_{0} \mathrm{c}_{\mathrm{n}}+\lambda_{1} \mathrm{c}_{\mathrm{n}-1}+\cdots+\lambda_{\mathrm{n}} \mathrm{c}_{0}, \quad \mathrm{n}=0,1,2, \ldots$.
Then

$$
\begin{aligned}
& u_{n}= \lambda_{0}\left(a_{0} b_{n}+a_{1} b_{n-1}+\cdots+\right. \\
&+\lambda_{1}\left(a_{0} b_{n-1}\right) \\
& b_{n-1} b_{n-2}+\left.\cdots+a_{n-1} b_{0}\right)+\cdots+\lambda_{n}\left(a_{0} b_{0}\right) \\
&= a_{0}\left(\lambda_{0} b_{n}+\lambda_{1} b_{n-1}+\cdots+\lambda_{n} b_{0}\right) \\
&+a_{1}\left(\lambda_{0} b_{n-1}+\lambda_{1} b_{n-2}+\cdots+\lambda_{n-1} b_{0}\right)+\cdots+a_{n}\left(\lambda_{0} b_{0}\right) \\
&= a_{0} t_{n}+a_{1} t_{n-1}+\cdots+a_{n} t_{0} \\
&= a_{0}\left(t_{n}-B\right)+a_{1}\left(t_{n-1}-B\right)+\cdots+a_{n}\left(t_{0}-B\right) \\
&+B\left(a_{0}+a_{1}+\cdots+a_{n}\right) .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(t_{n}-B\right)=0$, in view of Theorem 2.1,
$\lim _{\mathrm{n} \rightarrow \infty}\left[\mathrm{a}_{0}\left(\mathrm{t}_{\mathrm{n}}-\mathrm{B}\right)+\mathrm{a}_{1}\left(\mathrm{t}_{\mathrm{n}-1}-\mathrm{B}\right)+\ldots+\mathrm{a}_{\mathrm{n}}\left(\mathrm{t}_{0}-\mathrm{B}\right)\right]=0$
so that
$\lim _{n \rightarrow \infty} u_{n}=B\left(\sum_{n=0}^{\infty} a_{n}\right)=A B$,
i.e., $\left\{c_{k}\right\}$ is $\left(M, \lambda_{n}\right)$ summable to $A B$, completing the proof.

It is easy to prove the following theorem on similar lines.

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)
An Online International Journal Available at http://www.cibtech.org/jpms.htm
2013 Vol. 3 (1) January-March, pp.51-55/Natarajan

Research Article

Theorem 2.3 If $\sum_{k=0}^{\infty} a_{k}$ converges to A and $\sum_{k=0}^{\infty} b_{k}$ is $\left(M, \lambda_{n}\right)$ summable to B, then $\sum_{k=0}^{\infty} c_{k}$ is $\left(M, \lambda_{n}\right)$ summable to AB , where $\mathrm{c}_{\mathrm{n}}=\sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}} \mathrm{b}_{\mathrm{n}-\mathrm{k}}, \mathrm{n}=0,1,2, \ldots$.
Following Mears (1935) and Natarajan (1997), we prove the following result.
Theorem 2.4 If $\sum_{k=0}^{\infty} a_{k}$ is $\left(M, \lambda_{n}\right)$ summable to $A, \sum_{k=0}^{\infty} b_{k}$ is $\left(M, \mu_{n}\right)$ summable to B, then $\sum_{k=0}^{\infty} c_{k}$ is $\left(M, \gamma_{n}\right)$ summable to AB , where $\mathrm{c}_{\mathrm{n}}=\sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}} \mathrm{b}_{\mathrm{n}-\mathrm{k}}, \gamma_{\mathrm{n}}=\sum_{\mathrm{k}=0}^{\mathrm{n}} \lambda_{\mathrm{k}} \mu_{\mathrm{n}-\mathrm{k}}, \mathrm{n}=0,1,2, \ldots$.
Proof. First we note that $\lim _{n \rightarrow \infty} \gamma_{n}=0$ using Theorem 2.1, since $\lim _{n \rightarrow \infty} \lambda_{n}=\lim _{n \rightarrow \infty} \mu_{n}=0$ so that the method $\left(\mathrm{M}, \gamma_{\mathrm{n}}\right)$ is defined.
Let $A_{\mathrm{n}}=\sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}}, \mathrm{B}_{\mathrm{n}}=\sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{b}_{\mathrm{k}}, \mathrm{C}_{\mathrm{n}}=\sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{c}_{\mathrm{k}}, \mathrm{n}=0,1,2, \ldots$. Let
$\alpha_{\mathrm{n}}=\sum_{\mathrm{k}=0}^{\mathrm{n}} \lambda_{\mathrm{k}} \mathrm{A}_{\mathrm{n}-\mathrm{k}}, \quad \beta_{\mathrm{n}}=\sum_{\mathrm{k}=0}^{\mathrm{n}} \mu_{\mathrm{k}} \mathrm{B}_{\mathrm{n}-\mathrm{k}}, \delta_{\mathrm{n}}=\sum_{\mathrm{k}=0}^{\mathrm{n}} \gamma_{\mathrm{k}} \mathrm{C}_{\mathrm{n}-\mathrm{k}}, \mathrm{n}=0,1,2, \ldots$. We now do some computation to show that

$$
\delta_{\mathrm{n}}=\sum_{\mathrm{k}=0}^{\mathrm{n}} \alpha_{\mathrm{k}} \beta_{\mathrm{n}-\mathrm{k}}-\sum_{\mathrm{k}=0}^{\mathrm{n}-1} \alpha_{\mathrm{k}} \beta_{\mathrm{n}-\mathrm{k}-1}
$$

We first note that
$C_{n}=a_{0} B_{n}+a_{1} B_{n-1}+\cdots+a_{n} B_{0}$,
so that
$\delta_{n}=\gamma_{0} C_{n}+\gamma_{1} C_{n-1}+\cdots+\gamma_{n} C_{0}$

$$
\begin{aligned}
= & \gamma_{0}\left(a_{0} B_{n}+a_{1} B_{n-1}+\cdots+a_{n} B_{0}\right) \\
& +\gamma_{1}\left(a_{0} B_{n-1}+a_{1} B_{n-2}+\cdots+a_{n-1} B_{0}\right)+\cdots+\gamma_{n}\left(a_{0} B_{0}\right) \\
= & a_{0}\left(\gamma_{0} B_{n}+\gamma_{1} B_{n-1}+\cdots+\gamma_{n} B_{0}\right) \\
& +a_{1}\left(\gamma_{0} B_{n-1}+\gamma_{1} B_{n-2}+\cdots+\gamma_{n-1} B_{0}\right)+\cdots+a_{n}\left(\gamma_{0} B_{0}\right) .
\end{aligned}
$$

One can prove that
$\gamma_{0} B_{n}+\gamma_{1} B_{n-1}+\cdots+\gamma_{n} B_{0}=\lambda_{0} \beta_{n}+\lambda_{1} \beta_{n-1}+\cdots+\lambda_{n} \beta_{0}$, $\mathrm{n}=0,1,2, \ldots$ so that $\delta_{\mathrm{n}}=\mathrm{a}_{0}\left[\lambda_{0} \beta_{\mathrm{n}}+\lambda_{1} \beta_{\mathrm{n}-1}+\cdots+\lambda_{\mathrm{n}} \beta_{0}\right]$

$$
\begin{aligned}
& +\mathrm{a}_{1}\left[\lambda_{0} \beta_{\mathrm{n}-1}+\lambda_{1} \beta_{\mathrm{n}-2}+\cdots+\lambda_{\mathrm{n}-1} \beta_{0}\right]+\cdots+\mathrm{a}_{\mathrm{n}}\left[\lambda_{0} \beta_{0}\right] \\
= & \mathrm{A}_{0}\left[\lambda_{0} \beta_{\mathrm{n}}+\lambda_{1} \beta_{\mathrm{n}-1}+\lambda_{2} \beta_{\mathrm{n}-2}+\lambda_{3} \beta_{\mathrm{n}-3}+\cdots+\lambda_{\mathrm{n}} \beta_{0}\right] \\
& +\left(\mathrm{A}_{1}-\mathrm{A}_{0}\right)\left[\lambda_{0} \beta_{\mathrm{n}-1}+\lambda_{1} \beta_{\mathrm{n}-2}+\lambda_{2} \beta_{\mathrm{n}-3}+\cdots+\lambda_{\mathrm{n}-1} \beta_{0}\right] \\
& +\left(\mathrm{A}_{2}-\mathrm{A}_{1}\right)\left[\lambda_{0} \beta_{\mathrm{n}-2}+\lambda_{1} \beta_{\mathrm{n}-3}+\cdots+\lambda_{\mathrm{n}-2} \beta_{0}\right] \\
& +\left(\mathrm{A}_{3}-\mathrm{A}_{2}\right)\left[\lambda_{0} \beta_{\mathrm{n}-3}+\lambda_{1} \beta_{\mathrm{n}-4}+\cdots+\lambda_{\mathrm{n}-3} \beta_{0}\right] \\
& +\cdots+\left(\mathrm{A}_{\mathrm{n}}-\mathrm{A}_{\mathrm{n}-1}\right)\left[\lambda_{0} \beta_{0}\right] \\
= & \beta_{\mathrm{n}}\left[\lambda_{0} \mathrm{~A}_{0}\right]+\beta_{\mathrm{n}-1}\left[\lambda_{1} \mathrm{~A}_{0}+\lambda_{0}\left(\mathrm{~A}_{1}-\mathrm{A}_{0}\right)\right] \\
& +\beta_{\mathrm{n}-2}\left[\lambda_{2} \mathrm{~A}_{0}+\lambda_{1}\left(\mathrm{~A}_{1}-\mathrm{A}_{0}\right)+\lambda_{0}\left(\mathrm{~A}_{2}-\mathrm{A}_{1}\right)\right] \\
& +\beta_{\mathrm{n}-3}\left[\lambda_{3} \mathrm{~A}_{0}+\lambda_{2}\left(\mathrm{~A}_{1}-\mathrm{A}_{0}\right)+\lambda_{1}\left(\mathrm{~A}_{2}-\mathrm{A}_{1}\right)+\lambda_{0}\left(\mathrm{~A}_{3}-\mathrm{A}_{2}\right)\right] \\
& +\cdots \\
& +\beta_{0}\left[\lambda_{\mathrm{n}} \mathrm{~A}_{0}+\lambda_{\mathrm{n}-1}\left(\mathrm{~A}_{1}-\mathrm{A}_{0}\right)+\lambda_{\mathrm{n}-2}\left(\mathrm{~A}_{2}-\mathrm{A}_{1}\right)\right. \\
& \left.+\cdots+\lambda_{0}\left(\mathrm{~A}_{\mathrm{n}}-\mathrm{A}_{\mathrm{n}-1}\right)\right]
\end{aligned}
$$

Research Article

$$
\begin{aligned}
= & \beta_{\mathrm{n}}\left[\lambda_{0} \mathrm{~A}_{0}\right]+\beta_{\mathrm{n}-1}\left[\left(\lambda_{0} \mathrm{~A}_{1}+\lambda_{1} \mathrm{~A}_{0}\right)-\lambda_{0} \mathrm{~A}_{0}\right] \\
& +\beta_{\mathrm{n}-2}\left[\left(\lambda_{0} A_{2}+\lambda_{1} A_{1}+\lambda_{2} \mathrm{~A}_{0}\right)-\left(\lambda_{0} \mathrm{~A}_{1}+\lambda_{1} \mathrm{~A}_{0}\right)\right] \\
& +\cdots \\
& +\beta_{0}\left[\left(\lambda_{0} \mathrm{~A}_{\mathrm{n}}+\lambda_{1} \mathrm{~A}_{\mathrm{n}-1}+\cdots+\lambda_{\mathrm{n}} \mathrm{~A}_{0}\right)\right. \\
& \left.-\left(\lambda_{0} \mathrm{~A}_{\mathrm{n}-1}+\lambda_{1} \mathrm{~A}_{\mathrm{n}-2}+\cdots+\lambda_{\mathrm{n}-1} A_{0}\right)\right] \\
= & \beta_{\mathrm{n}} \alpha_{0}+\beta_{\mathrm{n}-1}\left[\alpha_{1}-\alpha_{0}\right]+\beta_{\mathrm{n}-2}\left[\alpha_{2}-\alpha_{1}\right]+\cdots+\beta_{0}\left[\alpha_{\mathrm{n}}-\alpha_{\mathrm{n}-1}\right] \\
= & \left(\alpha_{0} \beta_{\mathrm{n}}+\alpha_{1} \beta_{\mathrm{n}-1}+\cdots+\alpha_{\mathrm{n}} \beta_{0}\right) \\
& \quad-\left(\alpha_{0} \beta_{\mathrm{n}-1}+\alpha_{1} \beta_{\mathrm{n}-2}+\cdots+\alpha_{\mathrm{n}-1} \beta_{0}\right) \\
= & \sum_{\mathrm{k}=0}^{\mathrm{n}} \alpha_{\mathrm{k}} \beta_{\mathrm{n}-\mathrm{k}}-\sum_{\mathrm{k}=0}^{\mathrm{n}-1} \alpha_{\mathrm{k}} \beta_{\mathrm{n}-\mathrm{k}-1},
\end{aligned}
$$

proving our claim. Thus, for $\mathrm{n}=0,1,2, \ldots$,

$$
\begin{aligned}
\delta_{n} & =\sum_{k=0}^{n}\left(\alpha_{k}-A\right) \beta_{n-k}-\sum_{k=0}^{n-1}\left(\alpha_{k}-A\right) \beta_{n-k-1}+A\left[\sum_{k=0}^{n} \beta_{n-k}-\sum_{k=0}^{n-1} \beta_{n-k-1}\right] \\
& =\sum_{k=0}^{n}\left(\alpha_{k}-A\right) \beta_{n-k}-\sum_{k=0}^{n-1}\left(\alpha_{k}-A\right) \beta_{n-k-1}+A \beta_{n} \\
& =\sum_{k=0}^{n}\left(\alpha_{k}-A\right)\left(\beta_{n-k}-B\right)-\sum_{k=0}^{n-1}\left(\alpha_{k}-A\right)\left(\beta_{n-k-1}-B\right)+B\left[\sum_{k=0}^{n}\left(\alpha_{k}-A\right)-\sum_{k=0}^{n-1}\left(\alpha_{k}-A\right)\right]+A \beta_{n} \\
& =\sum_{k=0}^{n}\left(\alpha_{k}-A\right)\left(\beta_{n-k}-B\right)-\sum_{k=0}^{n-1}\left(\alpha_{k}-A\right)\left(\beta_{n-k-1}-B\right)+A \beta_{n}+B\left[\alpha_{n}-A\right] .
\end{aligned}
$$

Using Theorem 2.1, we have,
$\lim _{n \rightarrow \infty} \sum_{k=0}^{n}\left(\alpha_{k}-A\right)\left(\beta_{n-k}-B\right)=0$
and
$\lim _{n \rightarrow \infty} \sum_{k=0}^{n-1}\left(\alpha_{k}-A\right)\left(\beta_{n-k-1}-B\right)=0$,
Since $\lim _{n \rightarrow \infty} \alpha_{n}=A$ and $\lim _{n \rightarrow \infty} \beta_{n}=B$. Consequently,
$\lim _{n \rightarrow \infty} \delta_{n}=A B$,
i.e., $\sum_{k=0}^{\infty} c_{k}$ is $\left(M, \gamma_{n}\right)$ summable to $A B$, completing the proof of the theorem.

Remark 2.5 In particular, if $\left(M, \lambda_{n}\right),\left(M, \mu_{n}\right)$ are regular, then $\sum_{n=0}^{\infty} \lambda_{n}=\sum_{n=0}^{\infty} \mu_{n}=1$, in view of Theorem 1.4. Thus
$\sum_{n=0}^{\infty} \gamma_{n}=\left(\sum_{n=0}^{\infty} \lambda_{n}\right)\left(\sum_{n=0}^{\infty} \mu_{n}\right)=1$,
in view of Theorem 2.1. Using Theorem 1.4 again, it follows that $\left(\mathrm{M}, \gamma_{\mathrm{n}}\right)$ is regular too.

REFERENCES

Bachman G (1964). Introduction to p-adic numbers and valuation theory (Academic Press).
Mears FM (1935). Some multiplication theorems for the Nörlund means. Bulletin of the American Mathematical Society 41 875-880.

Research Article

Monna AF (1963). Sur le théorème de Banach-Steinhaus. Indagationes Mathématicae 25 121-131.
Natarajan PN (1978). Multiplication of series with terms in a non-archimedean field. Simon Stevin 52 157-160.
Natarajan PN (1997). A multiplication theorem for Nörlund means in non-archimedean fields. Journal of Analysis 5 59-63.
Natarajan PN (2003). Product theorems for certain summability methods in non-archimedean fields. Annales Mathematiques Blaise Pascal 10(2) 261-267.
Natarajan PN (2012a). A product theorem for the Euler and M methods of summability in ultrametric fields. Advancement and Development in Mathematical Sciences 2(1and 2) 31-39.
Natarajan PN (2012b). Some properties of the (M, λ_{n}) method of summability in ultrametric fields. International Journal of Physics and Mathematical Sciences 2(2) 169-176.
Srinivasan VK (1965). On certain summation processes in the p-adic field. Indagationes Mathematicae 27 368-374.

