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ABSTRACT 

In this paper, K denotes a complete, non-trivially valued, ultrametric field.  Infinite matrices, sequences 

and series have entries in K. The main purpose of this paper is to prove a few theorems on the Cauchy 

multiplication of (M, n) summable series in K. 
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INTRODUCTION AND PRELIMINARIES 

Throughout the present paper, K denotes a complete, non-trivially valued, ultrametric (or non-
archimedean) field.  Infinite matrices, sequences and series have entries in K.  In order to make the paper 

self-contained, we recall the following.  Given an infinite matrix A  (ank), ank  K, n, k = 0, 1, 2, ... and a 

sequence x = {xk}, xk  K, k = 0, 1, 2, ..., by the A-transform of x = {xk}, we mean the sequence  
A(x) = {(Ax)n},  

0,1,2,...,n,xa(Ax)
0k

knkn 




 

Where we assume that the series on the right converge.  If 


n
n

(Ax)lim  ℓ, we say that x = {xk} is A-

summable or summable A to ℓ.  If 


n
n

(Ax)lim  ℓ whenever 


k
k

xlim  ℓ, we say that A is regular. The 

following result, which gives a set of necessary and sufficient conditions for A to be regular in terms of 

the entries of the matrix, is well-known. 

Theorem 1.1 (Monna (1963))  A  (ank) is regular if and only if 

(i) nk
kn,

asup ; 

(ii) 0,1,2,...;k0,alim nk
n




 

and 

(iii) 1.alim
0k

nk
n







 

An infinite series 


0k

kx  is said to be A-summable to ℓ if {sn} is A-summable to ℓ where ,xs
n

0k

kn 


  n 

= 0, 1, 2,.... 

The (M, n) method in K was introduced earlier by Natarajan (2003) and some of its properties were 
studied in (Natarajan (2003, 2012a, 2012b)).  

Definition 1.2 Let {n} be a sequence in K such that .0λlim n
n




  The (M, n) method is defined by the 

infinite matrix (ank), where 
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.nk0,

;nk,λ
a

kn

nk
 

 

Remark 1.3 In this context, we note that the (M, n) method reduces to the Y-method of Srinivasan 

(1965), when K = Qp, the p-adic field for a prime p, 0 = 1 = 
2
1  and n = 0,  

n  2. 

Theorem 1.4 (see Natarajan (2012b), Theorem 2.1). The (M, n) method is regular if and only if 

1.λ
0n

n 




 

 

RESULTS 
The following result is very useful in the sequel (see Natarajan (1978),  

Theorem 1). 

Theorem 2.1 If 0,blimalim n
n

n
n




 then 0.clim n
n




  Further, if ,a
0n

n




 


0n

nb converge with sums 

A, B respectively, then 


0n

nc  converges too with sum AB, where ,bac
n

0k

knkn 


  n = 0, 1, 2, ... . 

In this paper, we prove a few theorems on the Cauchy multiplication of (M, n) summable series in K. 

Theorem 2.2 If ak = o (1), k  , i.e., 0alim k
k




 and {bk} is (M, n) summable to B, then {ck} is (M, 

n) summable to AB, where ,bac
n

0k

knkn 


  n = 0, 1, 2, ... and A.a
0k

k 




 

Proof. Let 

tn = 0 bn + 1 bn1 +  + n b0,    n = 0, 1, 2, ... . 

By hypothesis, B.tlim n
n




  Let 

un = 0 cn + 1 cn1 +  + n c0,    n = 0, 1, 2, ... . 
Then 

un = 0 (a0 bn + a1 bn1 +  + an b0) 

        + 1 (a0 bn1 + a1 bn2 +  + an1 b0) +  + n (a0 b0) 

        = a0 (0 bn + 1 bn1 +  + n b0) 

            + a1 (0 bn1 + 1 bn2 +  + n1 b0) +  +an (0 b0) 

        = a0 tn + a1 tn1 +  + ant0 

        = a0 (tn  B) + a1 (tn1  B) +  + an (t0  B)  

            + B(a0 + a1 +  + an). 

Since 0,B)(tlimalim n
n

n
n




 in view of Theorem 2.1,  

0B)](ta...B)(taB)(t[alim 0n1n1n0
n

 


 

so that 

AB,aBulim
0n

nn
n









 






 

i.e., {ck} is (M, n) summable to AB, completing the proof.              □ 
 It is easy to prove the following theorem on similar lines. 
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Theorem 2.3 If 


0k

ka  converges to A and 


0k

kb  is (M, n) summable to B, then 


0k

kc  is (M, n) 

summable to AB, where ,bac
n

0k

knkn 


  n = 0, 1, 2, ... . 

Following Mears (1935) and Natarajan (1997), we prove the following result. 

Theorem 2.4 If 


0k

ka is (M, n) summable to A, 


0k

kb  is (M, n) summable to B, then 


0k

kc  is (M, n) 

summable to AB, where ,bac
n

0k

knkn 


  ,μλγ
n

0k

knkn 


  n = 0, 1, 2, ... . 

Proof. First we note that 0γlim n
n




 using Theorem 2.1, since 0μlimλlim n
n

n
n




 so that the method 

(M, n) is defined. 

Let ,aA
n

0k

kn 


 ,bB
n

0k

kn 


  ,cC
n

0k

kn 


  n = 0, 1, 2, ... .  Let 

,Aλα
n

0k

knkn 


  ,Bμβ
n

0k

knkn 


  ,Cγδ
n

0k

knkn 


  n = 0, 1, 2, ... .  We now do some computation to 

show that 

.βαβαδ
1n

0k

1knk

n

0k

knkn 








   

We first note that 

Cn = a0 Bn + a1 Bn1 +  + an B0, 
so that 

n = 0 Cn + 1 Cn1 +  + n C0 

       = 0 (a0 Bn + a1 Bn1 +  + an B0) 

           + 1 (a0 Bn1 + a1 Bn2 +  + an1 B0) +  + n (a0 B0) 

       = a0 (0 Bn + 1 Bn1 +  + n B0) 

           +  a1 (0 Bn1 + 1 Bn2 +  + n1 B0) +  + an (0 B0). 
One can prove that 

0 Bn + 1 Bn1 +  + n B0 = 0 n + 1 n1 +  + n 0, 
n = 0, 1, 2, ... so that 

n = a0 [0 n + 1 n1 +  + n 0] 

           +  a1 [0 n1 + 1 n2 +  + n1 0] +  + an [0 0] 

        = A0 [0 n + 1 n1 + 2 n2 + 3 n3 +  + n 0] 

           + (A1  A0) [0 n1 + 1 n2 + 2 n3 +  + n1 0] 

           + (A2  A1) [0 n2 + 1 n3 +  + n2 0] 

           + (A3  A2) [0 n3 + 1 n4 +  + n3 0] 

           +  + (An  An1) [0 0] 

        = n [0 A0] + n1 [1 A0 + 0 (A1  A0)] 

           + n2 [2 A0 + 1 (A1  A0) + 0 (A2  A1)] 

           + n3 [3 A0 + 2 (A1  A0) +  1 (A2  A1) + 0 (A3  A2)] 

           +    

           + 0 [n A0 + n1 (A1  A0) +  n2 (A2  A1)  

+  + 0 (An  An1)] 
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        = n [0 A0] + n1 [(0 A1 + 1 A0)  0 A0] 

           + n2 [(0 A2 + 1 A1 + 2 A0)  (0 A1+ 1 A0)] 

           +  

           + 0 [(0 An + 1 An1 +  + n A0)  

 (0 An1+ 1 An2 +  + n1 A0)] 

        = n 0 + n1 [1  0] + n2 [2  1] +  + 0 [n  n1] 

        = (0 n + 1 n1 +  + n 0) 

      (0 n1 + 1 n2 +  + n1 0) 

        = ,βαβα
1n

0k

1knk

n

0k

knk 








   

proving our claim.  Thus, for n = 0, 1, 2, ..., 

A].B[αAβB)A)(β(αB)A)(β(α

AβA)(αA)(αBB)A)(β(αB)A)(β(α

AβA)β(αA)β(α

ββAA)β(αA)β(αδ

nn

1n

0k

1knk

n

0k

knk

n

1n

0k

k

n

0k

k

1n

0k

1knk

n

0k

knk

n

1n

0k

1knk

n

0k

knk

1n

0k

1kn

n

0k

kn

1n

0k

1knk

n

0k

knkn























































































 

Using Theorem 2.1, we have, 








n

0k

knk
n

0B)A)(β(αlim  

and 

,0B)A)(β(αlim
1n

0k

1knk
n








  

Since Aαlim n
n




 and B.βlim n
n




  Consequently,  

AB,δlim n
n




 

i.e., 


0k

kc  is (M, n) summable to AB, completing the proof of the theorem.           □ 

Remark 2.5 In particular, if (M, n), (M, n) are regular, then 1,μλ
0n

n

0n

n 








 in view of Theorem 

1.4.  Thus 

1,μλγ
0n

n

0n

n

0n

n 















 













 

in view of Theorem 2.1.  Using Theorem 1.4 again, it follows that (M, n) is regular too. 
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