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ABSTRACT 

Rectangular waveguide twist components are required in many communication applications, 
especially in satellite communications. While designing twisted waveguides it is necessary to take 

care about exact location and angle of twist for proper distribution of electric and magnetic fields. So 

that electromagnetic waves can propagate through waveguide in the desired manner. The problem of 

propagation of dominant TE mode in twisted waveguide of rectangular cross section with shift in axis 
of twist is analyzed up to 12

th
 order perturbation terms. The helical coordinate system is used for 

mathematical formulation of the problem and perturbation technique is used in obtaining the solution. 

It is shown that the effect of shifting the axis of twist cannot be observed up to second order terms. 
The contribution of higher order terms cannot be neglected for accuracy of results. The information 

about the percentage contribution of higher order terms is worked out. This is useful in deciding the 

number of terms to be included for the expected accuracy and fixing the position of axis of twist of 
waveguide for propagation of electromagnetic waves without loss. 

 

Key Words: Rectangular Waveguide, Twisted Waveguide, Perturbation Technique 

 

INTRODUCTION 
Waveguide is normally rigid and therefore it is often necessary to direct the waveguide in a particular 

direction. Waveguide bends and twists are very useful in building a waveguide system.  Using 
waveguide bends and twists it is possible to arrange the waveguide into the positions required.  

Regular straight hollow waveguides have phase velocities greater than the free-space speed of light 

for propagating electromagnetic waves. Conventional slow wave structures used for accelerating 

charged particles and other applications employ reactive loadings in hollow straight waveguides to 
reduce the phase velocity of electromagnetic fields in the specific mode to be used. Waveguide twists 

are also useful in many applications to ensure the polarization is correct.  

Lewin (1955) investigated the propagation in curved and twisted rectangular waveguides by putting 
the wave equation in a form in which the co-ordinates in a waveguide cross-section are also the 

independent variables in the differential equation. Lewin and Ruehle (1978) obtained the solution for 

degenerate mode in twisted rectangular waveguide, with emphasis on the square waveguide. 
Twisted waveguide sections have been implemented in waveguide circuits for simple plumbing 

purposes with no attention to their phase properties. It has been found that the twisted hollow 

waveguides may support slow-wave waveguide modes.   The twisted waveguide structures have been 

modeled and simulated using MAFIA (1997) and Agilent HFSS codes, the 3-D electromagnetic 
solvers, to show the slow-wave properties. 

With an optimum shape of the cross section and pitch angle, a twisted waveguide can have the desired 

phase velocity of a specific mode. Bornemann (1995) designed rectangular waveguides of 90
0
 twist 

ideally suited for application in satellite communication. Reutskiy (2008) investigated the methods of 

external excitation for analysis of arbitrarily-shaped Hollow Conducting Waveguides.  Mazar Qureshi 

(2010) discussed processes of designing the twist of various angles. Hatsuo Yabe et al., (1984) 
studied theoretically the reflection characteristics of straight rectangular waveguide. They used a 

perturbation method and a modal analysis is applied to the hybrid mode field inside the twisted 

waveguide. He also reported that the rectangular input and output ports can be of different cross-

sections, thus eliminating the need for additional impedance transformers. 
Wilson et al., (2008) studied twisted waveguides for particle accelerator applications and also 

discussed the advantages of using twisted guides over conventional RF accelerating cavities.  They 
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also claimed that the existing perturbation theory methods yield adequate results for slowly twisted 

structures. 

A twisted waveguide maintains a uniform cross section at any location on the beam axis except the 
bearing angle. If a simple rectangular waveguide is twisted, both electric and magnetic fields in the 

waveguide will be twisted along the guide to satisfy the boundary conditions. 

When using waveguide bends and waveguide twists, it is necessary to ensure the bending and twisting 
is accomplished in the correct manner otherwise the electric and magnetic fields will be unduly 

distorted and the signal will not propagate in the required manner, causing loss and reflections. 

Accordingly waveguide bend and waveguide twist sections are manufactured specifically to allow the 

waveguide direction to be altered without unduly destroying the field patterns and introducing loss. In 
this paper we discussed the effect of shifting the axis twist of rectangular waveguide on propagation 

of electromagnetic waves. For this we used perturbation technique and obtained the solutions for 

higher order terms up to twelfth order to obtain the sufficient accuracy.  
 

MATHMATICAL FORMULATION 

The problem of effect of higher order perturbation terms on propagation of wave in twisted 
rectangular waveguide with the axis of twist at its centre was worked out by Chaudhari and Patil 

(1994). Now the problem of effect of shifting the axis of twist has solved.   

                 

 
               Figure 1: Twisted Rectangular Waveguide (With Shift in Axis of Twist) 

 

Figure 1 shows rectangular waveguide twisted about an axis shifted to point (c, d) with respect to 

origin (centre of the waveguide), and (x, y, z) represent co-ordinates of twisted co-ordinate system.   
The transformation equations are 

               X = (x + c) cos(pz) + (y+d)  sin (pz)  

               Y = (y+ d) cos(pz) -  (x+c)  sin (pz)     …………1 
               Z = z 

 

Where P =
2π

L
 , L  is the distance in which twisted guide makes one complete rotation. 

  The wave equation in fixed co-ordinate system is  

 
𝜕2𝛹

𝜕𝑥 2   + 
𝜕2𝛹

𝜕𝑦 2   + 
𝜕2𝛹

𝜕𝑧 2   + 𝑘2𝛹 = 0      …………2 

 Where k =  
2𝜋

𝜆
   and  𝜆 = free space wavelength. 

 
The boundary conditions are 
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                             𝐸𝑥  = 
𝜕Ψ

𝜕Y
 =  0   ……….. at Y =   (b/2) − d 

                  at Y = (− b/2) − d 

 

               𝐸𝑦  = 
𝜕Ψ

𝜕X
 =  0    ……….. at X = (b/2) – c       …………3 

                              at X = (− a/2) − c   

                 

                            𝐸𝑧= 0                ………..    On the guide surface.     
 

The zeroth order, first order and second order perturbation equations are same as that for waveguide 

twisted about z-axis at its centre.  The corresponding general solutions assumed are 

 𝛹0 = sin( 
(𝜋  (𝑥+𝑐)

𝑎
 )                       …………4   

   

𝛹0 =   Amn

∞

n=0

   𝑐𝑜𝑠   𝑥 −
𝑎

2
+ 𝑐 

𝑚𝜋

𝑎
 . cos[ 𝑌 −

𝑏

2
+ 𝑑 

𝑛𝜋

𝑏
]               …………5 

∞

m=0 

 

                                                                                                                       
And 

𝛹2 =   Bmn

∞

n=0

   𝑐𝑜𝑠   𝑥 −
𝑎

2
+ 𝑐 

𝑚𝜋

𝑎
 . cos[ 𝑌 −

𝑏

2
+ 𝑑 

𝑛𝜋

𝑏
]                  …………6

∞

m=0 

 

          
By assuming these solutions, the calculations for A1, A2 Amn and Bmn are carried out with the 

process used in the calculations for waveguide twisted about Z-axis at its centre (Chaudhari and Patil, 

1994). It is observed that the values of A1, A2 Amn and Bmn are same as that for waveguide twisted 

about Z-axis at its centre.  In other words, the effect of shifting the axis of twist cannot be observed up 
to second order terms.In order to see the effect of shifting the axis of twist it is necessary to obtain the 

solutions for higher order equations. 

Third order Solution 
  The general solution for third order perturbation equation satisfying boundary conditions in eq.3 is 

𝛹3 =   Cmn

∞

n=0

   𝑐𝑜𝑠   𝑥 −
𝑎

2
+ 𝑐 

𝑚𝜋

𝑎
 . cos[ 𝑌 −

𝑏

2
+ 𝑑 

𝑛𝜋

𝑏
]                        …………7

∞

m=0 

 

After carrying out calculations as in section (2.2C), the values of A3 and C'mn obtained are 

𝐴′3 =  0                 …………8 
and  

𝐶′𝑚𝑛 = 𝐴′𝑚𝑛 . 

 𝑎𝑏 [ 
𝜋
𝑎
 

2
𝐴2−  

𝑛𝜋2

𝑏   
𝑎3

12 𝑎𝑐2 + 
1
2 

𝑎3

𝑚𝜋2 −   
𝑚𝜋
𝑎

 
2

  
𝑚𝜋
𝑎

 
2

  
𝑏3

12 𝑏𝑑2 + 
1
2 

𝑏3

𝑛𝜋2    

  
𝑚𝜋
𝑎

 
2

+  
𝑛𝜋
𝑏
 

2

−  
𝜋
𝑎
 

2
  𝑎𝑏

 

                     ………9 

Fourth order Solution: 

The general solution for fourth order perturbation equation satisfying boundary conditions in eq.3 is 

𝛹4 =   D′mn

∞

n=0

   𝑐𝑜𝑠   𝑥 −
𝑎

2
+ 𝑐 

𝑚𝜋

𝑎
 . cos[ 𝑌 −

𝑏

2
+ 𝑑 

𝑛𝜋

𝑏
]                   

  ∞   

m=0 

.…………10 

 

With usual process of determining coefficients as in section 2.2d, the values of A'4 and D' mn are 

 𝐴′4 =   
2jk ′

b
∞
n=1    m ( 

b

nπ
 )2 −   ( 

a

π
 )2  .   

2a

π2  C′mn −
A2

ak ′
2  Amn    ∞

m=0 [(1 + cosmπ) (1 - cosnπ)]                                                                                  

                                                                                                                                             .…………11     
 

       and  



International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)  

An Online International Journal Available at http://www.cibtech.org/jpms.htm  

2013 Vol. 3 (1) January-March, pp.61-68/Chaudhari  

Research Article 

64 

 

𝐷′𝑚𝑛 = 0.                           …………12 

 

Fifth order Solution 
The general solution for fifth order perturbation equation satisfying boundary conditions in eq.3 is 

𝛹5 =   𝐸′𝑚𝑛

∞

𝑛=0

   𝑐𝑜𝑠   𝑥 −
𝑎

2
+ 𝑐 

𝑚𝜋

𝑎
 . cos[ 𝑌 −

𝑏

2
+ 𝑑 

𝑛𝜋

𝑏
]                          …………13

∞

m=0 

 

  

With the process of determining coefficients as in the section (2.2e), we get 

 𝐴′5 = 0                             …………14 

 

and 

          𝐸′𝑚𝑛 =    
𝜋

𝑎
  

2

(𝐴2    𝐶
′
𝑚𝑛 + 𝐴′

4  𝐴′
𝑚𝑛  −

3

2
 𝐶′𝑚𝑛  −𝐶 ′

𝑚𝑛 ( 
𝑛𝜋

𝑏
 )2   

𝑎

12

2
+ 𝑐2 +

  1

2
   

𝑎

𝑚𝜋
 

2
 −

𝐶′𝑚𝑛𝑚𝜋𝑎2+𝑏212+ 𝑑2+12−𝑏𝑛𝜋2  𝑥 1𝑚𝜋𝑎2+𝑛𝜋𝑏2−𝜋𝑎2                                              ..…..……15 

A similar method is used for calculations of higher order equations upto 12
th
 order.   

The expressions for the respective coefficient and constant are given below. 

Sixth order Solution 

𝐴′
6 = 𝑗  

4𝑎

𝑏𝜋4
     

𝑚𝑏2

𝑛2
− 𝑎2   𝑘′𝐸 ′

𝑚𝑛 −
𝜋2

2𝑎2𝐾,
  𝐴′

4𝐴𝑚𝑛 + 𝐴2𝐶
′
𝑚𝑛  

∞

𝑛=1 

∞    ′

𝑚=0 

−
𝜋4

𝐵𝑎4𝐾′3
 𝐴2

2𝐴𝑚𝑛    1 + 𝑐𝑜𝑠𝑚𝜋  1 − 𝑐𝑜𝑠𝑛𝜋                                          …………16  

and 

        𝐹′𝑚𝑛 = 0                                                                                               …………17 

Seventh order Solution 

𝐴′7 = 0                                              …………18 

and 

 

𝐺 ′
𝑚𝑛 =   

𝜋

𝑎
  

2

 𝐴2 𝐸𝑚𝑛 + 𝐴′
4𝐶

′
𝑚𝑛 + 𝐴′

6𝐴𝑚𝑛  −
3

2
 𝐸 ′

𝑚𝑛

− 𝐸 ′
𝑚𝑛    

𝑛𝜋

𝑏
 

2

  
𝑎2

12
+ 𝑐2 +

1

2
 
𝑎

𝑚𝜋
 

2

 +  
𝑚𝜋

𝑎
 

2

 
𝑏2

12
 + 𝑑2     

+
1

2
 
𝑏

𝑛𝜋
 

2

  𝑥 
1

  
𝑚𝜋
𝑎

 
2

+  
𝑛𝜋
𝑏
 

2

−  
𝜋
𝑎
 

2
 

                                     …………19 

 

Eight order Solution 

𝐴′7 = 𝑗  
4𝑎

𝑏𝜋4
     ,   

𝑚𝑏2

𝑛2
− 𝑎2   𝑘′𝐺′𝑚𝑛 −

𝜋2

2𝑎2𝐾,
  𝐴′6𝐴𝑚𝑛 + 𝐴′4𝐶′𝑚𝑛 + 𝐴2𝐸′𝑚𝑛  

∞

𝑛=1 

∞    ′

𝑚=0 

−
𝜋4

8𝑎4𝐾′3
 2𝐴2𝐴′4𝐴𝑚𝑛 + 𝐴2

2𝐶′𝑚𝑛  

−
𝜋6

16𝑎6-𝐾′5
 𝐴2

3𝐴𝑚𝑛    1 + 𝐶𝑜𝑠𝑚𝜋  1 − 𝑐𝑜𝑠𝑛𝜋                           …………20  

and 

𝐻′𝑚𝑛 = 0                       ..………21 

Ninth order Solution 

𝐴′9 = 0                      ..………22 

and 
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𝐼′𝑚𝑛 =   
𝜋

𝑎
  

2

 𝐴2 𝐺𝑚𝑛 + 𝐴′
4𝐸

′
𝑚𝑛 + 𝐴′

6𝐶𝑚𝑛 + 𝐴′8𝐴𝑚𝑛  −
3

2
 𝐺 ′

𝑚𝑛

− 𝐺𝑚𝑛    
𝑛𝜋

𝑏
 

2

  
𝑎2

12
+ 𝑐2 +

1

2
+  

𝑎

𝑚𝜋
 

2

 +  
𝑚𝜋

𝑎
 

2

 
𝑏2

12
 + 𝑑2

+  
𝑏

𝑛𝜋
 

2

  𝑥 
1

  
𝑚𝜋
𝑎

 
2

+  
𝑛𝜋
𝑏
 

2

−  
𝜋
𝑎
 

2
  

                                            . .………23 

Tenth order Solution          

𝐴′10 = 𝑗  
4𝑎

𝑏𝜋4
     ,   

𝑚𝑏2

𝑛2
− 𝑎2   𝑘′𝐼′𝑚𝑛 −

𝜋2

2𝑎2𝐾,
      𝐴′8𝐴𝑚𝑛 + 𝐴′6𝐶′𝑚𝑛 + 𝐴4𝐸′𝑚𝑛  

∞

𝑛=1 

∞     ′

𝑚=0 

+ 𝐴2𝐺′𝑚𝑛 ] −  
𝜋4

8𝑎4𝐾′3
  2𝐴2𝐴′6+𝐴′4

2  𝐴𝑚𝑛 + 2𝐴2𝐴′4𝐶′𝑚𝑛 + 𝐴2
2𝐸′𝑚𝑛  

−
𝜋6

16𝑎6-𝐾′5
 3𝐴2

3𝐴′4𝐴𝑚𝑛    1 + 𝐶𝑜𝑠𝑚𝜋  1 − 𝑐𝑜𝑠𝑛𝜋              . .………24   

and 

𝐽′𝑚𝑛 = 0                                   ……….25 

 

Eleventh order Solution   
𝐴′11 = 0                                            ……….26 

and 

𝐾′
𝑚𝑛 =   

𝜋

𝑎
  

2

 𝐴2 𝐼𝑚𝑛 + 𝐴′
4𝐺

′
𝑚𝑛 + 𝐴′

6𝐸𝑚𝑛 + 𝐴′8𝐶𝑚𝑛 + 𝐴′10𝐴𝑚𝑛  −
3

2
 𝐼′𝑚𝑛

− 𝐼𝑚𝑛   
𝑛𝜋

𝑏
 

2

  
 𝑛𝜋

𝑏
 

2

 
𝑎2

12
+ 𝑐2 +  

𝑎

𝑚𝜋
 

2

+  
𝑚𝜋

𝑎
 

2

 
𝑏2

12
  + 𝑑2

+  
𝑏

𝑛𝜋
 

2

   𝑥 
1

  
𝑚𝜋
𝑎

 
2

+  
𝑛𝜋
𝑏
 

2

−  
𝜋
𝑎
 

2
  

                                          ……… .27 

Twelfth order Solution    

𝐴′12 = 𝑗  
4𝑎

𝑏𝜋4
       

𝑚𝑏2

𝑛2
− 𝑎2   𝑘′𝑘′

𝑚𝑛

∞

𝑛=1 

∞    ′

𝑚=0 

−
𝜋2

2𝑎2𝐾,
  𝐴′

10𝐴𝑚𝑛 + 𝐴′
8𝐶

′
𝑚𝑛 + 𝐴6𝐸

′
𝑚𝑛 + 𝐴4𝐺

′
𝑚𝑛 +𝐴2𝐼

′
𝑚𝑛  

−  
𝜋4

8𝑎4𝐾′3
 2 𝐴2𝐴

′
8+𝐴

′
4𝐴

′
6  𝐴𝑚𝑛 +  2𝐴2𝐴

′
6 + 𝐴′

4
2
 𝐶 ′

𝑚𝑛 + 2𝐴2𝐴
′
4𝐸

′
𝑚𝑛

+ 𝐴2
2𝐺 ′

𝑚𝑛        

−
𝜋6

16𝑎6-𝐾′5
    3 𝐴2

2𝐴′
6 + 𝐴′

4
2
𝐴2 𝐴𝑚𝑛 + 3𝐴2

2𝐴′
4𝐶

′
𝑚𝑛 + 𝐴2

3𝐸 ′
𝑚𝑛    .   1

+ 𝐶𝑜𝑠𝑚𝜋  1 − 𝑐𝑜𝑠𝑛𝜋                                                                       ……… .28   
and 

     𝐿′𝑚𝑛 = 0                    ……….29 

 

Evaluation of Propagation Constant Square 

With constants 𝐴′1    𝐴′2    𝐴′3 ……𝐴"12   the propagation constant square is 

𝛽𝑠
2 = 𝐾2 −  

𝜋

𝑎
 

2
 1 + 𝐴′1𝑃

2 + 𝐴′3𝑃
3 +  …… . .𝐴′12𝑃

12                                          ……… .30                            

(In this formula 𝐴′1 = 𝐴′1   𝑎𝑛𝑑  𝐴′2 = 𝐴"2) 
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After substituting the values of constants 𝐴′1    𝐴′2    𝐴′3 ……𝐴′12  from respective equations we obtain 

the value of propagation constant of a wave propagating through a rectangular waveguide twisted 

about an axis shifted to point  (c, d) with respect to centre.      

             

NUMERICAL CALCULATIONS: 

Now we used theoretically derived formula 

 𝛽𝑠
2 = 𝐾2 −  

𝜋

𝑎
 

2
 1 + 𝐴′2𝑃

2 + 𝐴′4𝑃
4 +  … . . +𝐴′12𝑃

12  

For obtaining the values of 𝛽𝑠
2   under different shift in the axis of twist and find quantitative effect of 

the shift.  These calculations are carried out on PCAT with mathematical co-processor 80287.  The 

constants a’2, A’4, A’6 . . . . A’12 required in the above formula are evaluated by program ‘RWCD’.  

The process adopted for the determination of coefficients Amn, C’mn, E’mn, I’mn and constants A’2,  A’4,  
A’6 . . . . A’12, is same as that for calculations for waveguide twisted at its centre.  Here also the 

program subroutines ‘RWA2CD’, ‘RWA4CD’, ‘RWA6CD’, ‘RWA8CD’, RWA10CD’and 

‘RWA12CD’  are developed for determination of constants A’2, A’4, A’6, A’8, A’10 and A’12 

respectively.  The program is compiled till the convergence is obtained. 

In order to see the effect of shifting the axis of twist, the relative departure of   𝛽𝑠
2  from propagation 

constant square with axis of twist at centre of the guide with respect to  𝛽0
2 i.e.  𝛽𝑠

2 − 𝛽0
2 /𝛽0

2  is 

calculated.  The shift of axis of twist is carried along X-axis and Y-axis and diagonal.  The 

propagation constant square with shift along X-axis, Y-axis and diagonal are represented by 

𝛽𝐶
2,𝛽𝐷

2 ,𝛽𝐶𝐷
2   respectively. 

The relative departure of 𝛽𝐷
2   form 𝛽0

2  with respect to 𝛽0
2 i.e.  𝛽𝐷

2 − 𝛽0
2 /𝛽0

2 is calculated for fixed 

length L = 110mm and its percentage variation is plotted against shift of axis of twist along Y-axis 
from 0.0 to 0.5b for λ = 28mm, 30mm and 32mm in figure 2.  

The relative departure of 𝛽𝐶
2 from 𝛽0

2 with respect to i.e. 𝛽0
2 i.e.  𝛽𝐶

2 − 𝛽0
2 /𝛽0

2  is calculated for fixed 
length L = 110mm and its percentage variation is plotted against shift of axis of twist along X-axis 

from 0.0 to 0.5a for λ =28mm, 30mm and 32mm in figure 3.While figure 4 shows percentage 

variation of   𝛽𝐶𝐷
2 − 𝛽0

2 /𝛽0
2  against shift along diagonal at L = 110mm and for λ = 28mm, 30mm 

and 32mm. 

 

 
 
In general program ‘RWCD’ is used for calculations of shifting the axis along diagonal.  With C=0, 

this program gives calculations for the shift of axis along Y-axis while with d=0, it gives calculations 

for the shift of axis along X-axis.  For plotting graphs in figures 2, 3 and 4 program ‘PRWCD’ is 
developed. 
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The calculations are also carried out for the relative departures 𝛽𝐷
2 − 𝛽0

2 /𝛽0
2,  𝛽𝐶

2 − 𝛽0
2 /𝛽0

2  and 

 𝛽𝐶𝐷
2 − 𝛽0

2 /𝛽0
2 at fixed length (angle of twist) and different frequencies.  Figures 5, 6 and 7 show the 

percentage variation of  𝛽𝐷
2 − 𝛽0

2 /𝛽0
2,  𝛽𝐶

2 − 𝛽0
2 /𝛽0

2 and  𝛽𝐶𝐷
2 − 𝛽0

2 /𝛽0
2    respectively, for L = 

140mm, 150mm and 160mm against frequency ranging from 8 GHz to 12 GHz. 

  

CONCLUSION 
From the graphs plotted for to see the effect of shifting axis of twist of the waveguide, we observed   

the following conclusions. 

From figure 2 we conclude that the relative departure of 𝛽𝐷
2   from 𝛽0

2 with respect to 𝛽0
2   increases as 

we shift the axis of twist along Y-axis from centre of the guide towards the broader wall. 

Similarly the relative departure of 𝛽𝐶
2  from 𝛽0

2 with respect to 𝛽0
2 increases as the axis of twist is 

shifted along X-axis from centre of the guide towards narrower wall, as shown in figure 3.  But the 
magnitude of this departure is greater than the departure for shift in the axis of twist along Y-axis. The 

same trend is observed in figure 4, where the shift is along both axis to the same fraction of respective 

side (i.e. along the diagonal). 
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The relative departure along the diagonal is approximately equal to the addition of relative departure 

along X-axis and relative departure along Y-axis. 

From figures 5, 6 and 7 we conclude that for given twist and given shift of the axis of twist, 𝛽𝑠
2 −

𝛽02/𝛽02, decreases as frequency increases.  Here 𝛽𝑠2 may be 𝛽𝐶2 or 𝛽𝐷2 or 𝛽𝐶𝐷2. 
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