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ABSTRACT 
This paper considers the problem of two-dimensional boundary layer flow adjacent to a vertical, 

continuously stretching sheet in a viscous incompressible fluid. It is assumed that the sheet is stretched 

with a power-law velocity and is subjected to a variable surface heat flux. The governing boundary layer 
equations are transformed into ordinary differential equations using similarity transformation, which are 

than solved using maple software. The influence of velocity exponent parameter m (or temperature 

exponent parameter n) is presented and discussed. 
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Nomenclature 

𝑓           dimensionless stream function 

𝑔           acceleration due to gravity  

𝑘           thermal conductivity 

𝑃𝑟         Prandtl number 

𝑅𝑒𝑥        local Reynolds number 

𝐺𝑟𝑥        Grashof number 

𝑞𝑤         surface heat flux 

𝑢𝑤(𝑥)   velocity of the stretching surface 

𝑚          velocity exponent parameter 

𝑛           temperature exponent parameter  

𝑇           fluid temperature  

𝑇∞         ambient temperature 

𝑢, 𝑣       velocity component of the fluid along the x and y directions, respectively 

𝑥,𝑦       Cartesian coordinates along the surface and normal to it, respectively   

Greek symbols  

𝛼 thermal diffusivity  

𝛽 thermal expansion coefficient 

𝜂 dimensionless similarity variable 

𝜐 kinematic viscosity   

𝛹 stream function 

𝜆 buoyancy parameter 

𝜃 dimensionless temperature  

Superscript  

′ derivative with respect to 𝜂  

 

INTRODUCTION 
The fluid dynamics over a stretching surface is important in extrusion process. The production of sheeting 

material arises in a number of industrial manufacturing process and includes both metal and polymer 

sheets. Examples are numerous and they include the cooling of an infinite metallic plate in a cooling bath, 
the boundary layer along material handling conveyers, the aerodynamic extrusion of plastic sheets, the 
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boundary layer along a liquid film in condensation process, paper production, glass blowing, metal 

spinning, and drawing plastic films, to name just a few. The quality of the final product depends on the 

rate of heat transfer at the stretching surface. The pioneering study by Crane (1970) who presented an 
analytical solution for the steady two-dimensional stretching of a surface in a quiescent fluid, many 

authors have considered various aspects of this problem and obtained similar solutions. Since then, many 

authors have studied various aspects of this problem. For instance, Magyari and Keller (1999; 2000). 
Sriramulu et al. (2001) studied steady flow and heat transfer of a viscous incompressible fluid through 

porous medium over a stretching sheet. Partha et al. (2005) studied the similar problem, by considering 

exponentially stretching surface. The temperature field in the flow over a linearly stretching surface 

subject to a variable surface temperature was studied by Grubka and Bobba (1985), while Dutta et al. 
(1985) reported the temperature distribution for the uniform surface heat flux condition. Elbashbeshy 

(1998) and Lin and Chen (1998) considered the heat transfer characteristics on a stretching horizontal 

surface subject to a power-law velocity and variable surface heat flux. 
Motivated by works mentioned above and practical applications, the main concern of the present paper is 

to study the problem of heat transfer characteristics adjacent to a stretching vertical sheet with a power-

law velocity subjected to a variable surface heat flux.  
 

MATHEMATICAL FORMULATION 

We consider a steady, two-dimensional flow of a viscous and incompressible fluid adjacent to a vertical, 

continuously stretching sheet placed in the plane y = 0 of a Cartesian system of coordinates xy with the x -
axis along the sheet, while the y-axis is measured normal to the surface of the sheet. It is assumed that the 

surface heat flux and the stretching velocity vary in a power-law with the distance from the leading edge, 

i.e. 𝑞𝑤 𝑥 = 𝑎𝑥𝑛  and 𝑢𝑤 𝑥 = 𝑏𝑥𝑚  respectively, where a and b are constants and m and n are the 
exponents. Under these assumptions along with the Boussinesq and boundary-layer approximations, the 

equations which model the problem under consideration are: 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0              …(1) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= 𝜐

𝜕2𝑢

𝜕𝑦2 + 𝑔𝛽(𝑇 − 𝑇∞)              …(2) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2              …(3) 

Along with the boundary conditions for the problem are given by: 

           𝑦 = 0:𝑢 = 𝑢𝑤  𝑥 , 𝑣 = 0,
𝜕𝑇

𝜕𝑦
= −

𝑞𝑤

𝑘
 

           𝑦 → ∞:𝑢 = 0,𝑇 = 𝑇∞                                                                                                    …(4) 
The continuity equation can be satisfied by introducing a stream function Ψ  such that  

𝑢 =
𝜕  Ψ

𝜕𝑦
 𝑎𝑛𝑑 𝑣 = −

𝜕  Ψ

𝜕𝑥
    , then the momentum and energy equations can be transformed into the 

corresponding nonlinear ordinary differential equations by the following transformation [10, 11]: 

𝜂 =  
𝑢𝑤

𝜐𝑥
 

1/2

𝑦, 𝑓  𝜂 =
Ψ 

 𝜐𝑥𝑢𝑤  1/2 , 𝜃 𝜂 =
𝑘(𝑇−𝑇∞)

𝑞𝑤
 
𝑢𝑤

𝜐𝑥
 

1/2

    …(5) 

Where 𝜂  is the independent similarity variable. The transformed nonlinear ordinary differential 

equations are:  

𝑓′′′ +
𝑚+1

2
𝑓𝑓′′ −𝑚𝑓′2 + 𝜆𝜃 = 0                                                                                         …(6) 

1

𝑃𝑟
𝜃′′ +

𝑚+1

2
𝑓𝜃′ − 𝑛𝑓′𝜃 = 0          …(7) 

where primes denote differentiation with respect to 𝜂 , m is the velocity exponent parameter, 

n is the temperature exponent parameter, Pr = 
𝜐

𝛼
 is the Prandtl number and λ=

𝐺𝑟𝑥

𝑅𝑒𝑥
5/2 is the buoyancy or 

mixed convection parameter with 𝐺𝑟𝑥 =
𝑔𝛽 𝑞𝑤𝑥4

𝑘𝜐2  and 𝑅𝑒𝑥 =
𝑢𝑤 𝑥

𝜐
 are the local Grashof number and local 
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Reynolds number, respectively. It can be shown that λ is independent of x if n = (5m- 3)=2. Thus, in the 

presence of buoyancy force, similarity is achieved under this limitation.  

For n = (5m - 3)=2, equation (7) becomes:  
1

𝑃𝑟
𝜃′′ +

𝑚+1

2
𝑓𝜃′ −

5𝑚−3

2
𝑓′𝜃 = 0         …(8) 

Then the boundary conditions becomes  

          𝑓 0 = 0,𝑓′ 0 = 1,𝜃′ 0 = −1 

𝑓′ ∞ → 0,𝜃 ∞ → 0.                                                                                                         …(9) 
 

NUMERICAL SOLUTION 
The non- liner ordinary differential equation (6) and (8) subject to boundary condition (9) are solve for 

different values of velocity exponent parameter m, with fixed values of buoyancy parameter 𝜆 and Prandtl 

number Pr,  numerically using Runge-Kutta-Fehlberg forth-fifth order method. To solve these equations 

we adopted symbolic algebra software Maple.  
 

 
Figure 1: Velocity distribution f'(η) for the different values of m (for Pr=1.0 and λ=0.0). 

 

 
Figure 2: Temperature distribution ɵ(η) for different values of m (for Pr=1.0 and λ=0.0). 
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Maple uses the well known Runge-Kutta-Fehlberg Fourth-fifth order (RFK45) method to generate the 

numerical solution of a boundary value problem. The boundary condition 𝜂 = ∞ was replaced by those at 

𝜂 = 6 in accordance with standard practice in the boundary layer analysis. The effects of the m on the 
velocity distribution and temperature distribution are shown in figures 1 and 2 respectively.  

 

RESULTS AND DISCUSSION 

Figures 1 and 2 shows the velocity and temperature distribution for different values of velocity exponent 
parameter m (or temperature exponent parameter n) with fixed values of Pr=1.0 and λ=0.0, respectively. 

It is seen that the boundary layer thickness of both velocity and temperature profiles decrease as the 

values of m increases.  
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