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ABSTRACT 

We consider a lost sale recapture model in a newsvendor framework. As in real practice, we have 
considered that there may be an opportunity to backlog the lost sales, by offering some incentive for 

waiting. Further, not all the customers that could not buy in the first instant may avail the rebate offer and 

buy. The retailer’s decision includes selling price, order quantity and the rebate that will maximize its 

expected profit. The back log fill rate is modelled as a function of the proportion of rebate relative to the 
price. Sensitivities of the demand errors in the form of normal distribution rather than the uniform 

distribution serve as an extension to the previous work by the authors.  
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INTRODUCTION 
This paper considers the buying and ordering policies of a newsvendor-type retailer, faced with the 

possibility of backordering at least some of the shortages incurred from demand underestimation. The 

backordering occurs through an emergency purchase of the items in question at some premium over the 

regular purchasing cost. In turn, the retailer offers to the end-customers left out of the initial sale a rebate 
incentive upon purchase of each item backordered. 

The problem of backordering shortage items has been considered recently by Weng (2004) and Zhou and 

Wang (2009). Both generalize the newsvendor problem (heretofore NVP) into a two-step decision 
process. In the first stage, the retailer places the initial order that equates the costs of over- and under-

estimation of the demand, as corresponds to the traditional NVP. In the second, the retailer may place a 

special order from the manufacturer at the end of the selling season. The basic difference between the two 
models lies in whether the manufacturer (Weng, 2004) or both parties (Zhou and Wang, 2009) pay for the 

setup costs of the special order.  

Our model differs from these two in five fundamental ways. First, we consider a price-dependent demand, 

with the selling price, p, a decision variable, more in accordance with the main tenets of microeconomic 
theory (e.g. Arcelus and Srinivasan, 1987). Second, we introduce a rebate-dependent fill rate, Ω, 

representing the probability of the end-customers returning to satisfy the unfilled demand. This fill rate is 

a function of the size of the rebate, r, offered relative to the selling price. Third, the policy decisions on 
the emergency order and on the rebate policy occur up front, along with the remaining ordering and 

pricing policies, rather than at the end of the season, thereby rendering the resulting formulation into a 

more traditional one-stage, rather than a two-stage, NVP. Fourth, the decision variables are the selling 

price, the order size and the rebate offered as an incentive to satisfy at least a portion of the unfulfilled 
demand. Our model yields a unique profit-maximizing solution, for a family of deterministic mean 

demand functions and of probability distributions of the demand error that encompasses the vast majority 

of the models in the existing literature. 
The organization of the paper is as follows. The next section presents the formulation of the model, based 

upon that of Zhou and Wang (2009), to which we add the offering of a price rebate per backordered unit 

purchased. This paper is similar in lines of Arcelus et al., (2012), and Patel and Gor (2013). Here, we use 
an entirely different fill rate function than Arcelus et al., (2012) and include sensitivities to the normal 
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distribution over and above the one for uniform distribution discussed in Patel and Gor (2013). We 

describe the characteristics of the model, develop the objective function and derive the profit-maximizing 

optimality conditions that are shown to be unique. Section 3 presents a numerical example. In addition to 
illustrating the main features of the model and discussing some comparative statics of interest, this section 

attempts to conjecture the behavioural relationship between various parameters and variables. A 

conclusions section completes the paper. Table 1 lists the notations used throughout the paper. 

Table 1: Notation 

p The selling price per unit (decision variable) 

v The salvage value per unsold unit 

q The order quantity (decision variable) 
r The rebate per backordered item (decision variable) 

c The acquisition cost per unit 

s The shortage penalty per unsold unit 
D The total demand rate per unit of time 

g, ε The deterministic and stochastic components, respectively, of D 

a,b The upper and lower values, respectively, of ε 
μ, ζ The mean and standard deviation, respectively, of ε 

f, F The density function and the cumulative distribution function, respectively, of ε 

δ0,δ1 The intercept and slope, respectively, of the deterministic linear demand function  

γ0, γ1 
The intercept and the demand elasticity, respectively, of the iso-elastic 
deterministic demand function 

Ω The fill rate of backlogged demand 

d The premium on the purchase price of each backlogged unit acquired 

z The stocking factor  

Λ, Φ  The expected number of leftovers and shortages, respectively 

e The price elasticity of demand 

Iε The generalized failure rate function 
π(p,q,r) The retailer’s profit function 

E(p,q,r) The retailer’s expected profit function 

U.D The uniform Distribution 

   N.D The Normal Distribution 

Model Formulation 

In this section, we describe the key characteristics of the model, formulate the retailer’s profit-maximizing 

objective function and derive the optimality conditions. Observe that, in the development of the models, 
the arguments of the functions are omitted whenever possible, to simplify notation.  

Characteristics of the model 

Characteristic 1: Key properties of the demand function.  

 The random single-period total demand, D (p,ε), is of the form: 

errortivemultiplicaif,)p(g

erroradditiveif,)p(g),p(D
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Observe in (1) that the total demand includes a deterministic component of g units, denoted as the mean 

demand; and a stochastic element, denoted by units. Following the customary conventions of the 
literature on the subject, the relationship between g and ε is assumed to be either additive (Mills, 1958) or 

multiplicative (Karlin and Carr, 1962), with the former (latter) exhibiting a constant (variable) error 
variance and a variable (constant) coefficient of variation. Chan et al., (2004), Lau et al., (2007), Petruzzi 

and Dada (1999), Yao (2002) and Yao et al., (2006) discuss the implications of these assumptions and 

provide a review of the extant works on the field.  

Furthermore, unless otherwise stated, there is no need to identify a functional form of the mean demand, 
g(p). The results presented here are applicable to all the demand distributions normally used in the sales-

promotion field, i.e. linear, iso-elastic, log-concave or concave in p and the like (Yao, 2002; Yao, et al., 

2006). The only requirements for the deterministic demand function are that g be downward sloping and 
at least twice differentiable, with respect to p.  

Similarly, there is no need either to identify a probabilistic distribution for the stochastic demand 

component, ε. All that is needed is that it be defined over a finite range [a,b] and have a mean of , a 

standard deviation of , a density function of f(.) and a cumulative density function of F(.). If needed, 
rescaling the error to produce a different mean value is straightforward. Furthermore, as Yao (2002) and 

Yao et al., (2006) indicate, the probability distributions belonging to the GSIFR class include the most 

widely used in the literature such as uniform, normal, beta, gamma and the like. 
Characteristics 1.2 and 1.3 (e.g. Aydin and Porteus, 2009; Yao, 2002; Yao et al., 2006) represent 

considerable generalizations from the current practice in the revenue management literature of using 

specific demand and probabilistic distribution functions. The model is general enough to be applicable to 
all distributions, satisfying Characteristic 1. Yao, et al. (2006) lists the studies where the mean demand 

distribution is IPE and the random error distribution, GSFIR, regardless of whether the resulting total 

demand is modelled in the multiplicative or additive way. Further, as Theorem 1 of Yao, et al. (2006) 
demonstrates, the use of this family of distributions ensures the uniqueness of the resulting optimal 

policies. Detailed proofs of these results appear in Yao (2002). 

Characteristic 2: A fill rate, Ω, given by the following expression: 

 mprwhere
p

r m 0,10,0,)(

                           

(2) 

The fill rate, Ω, measures the fraction of end-customers who wish to fulfill their demand from the emergency 

order. Its functional form in (2) is rooted on the empirical literature on the subject and satisfies several 

properties of interest. First, it is a function of the value of the rebate relative to the selling price, r/p. Second, 

the value of   falls between 0 and 1, but does not approach either value as 0<r<p. Also, as m→0, →1 and 

as m→∞, →0. Only in the absence of the rebate i.e. r=0, =0. This reflects empirical findings implying 

that, if there is no rebate, buying of lost sales will not take place, unless the product enjoys a monopoly. 

Arcelus et al., (2012) have developed a lost sale recapture model validating Bawa and Shoemaker (1989) that 

there is still some “exposure effect” to the original sale that leads some end-customers to purchase, even in the 

absence of a coupon, i.e. even when r=0,>0. On the other hand, in this model, as r/p→1, →1indicating 

the possibility of every lost sale converting if the product is offered at a rebate equal to the selling price i.e 

almost absolutely free. 

Characteristic 3: The stocking factor, z 
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In (3), Φ and Λ represent the expected number of shortages and leftovers, respectively, as a result of 

demand fluctuations. The shortage level is expected to decrease with the rebate incentive. With respect to 

the stocking variable, z, it was introduced by Petruzzi and Dada (1999) and subsequently used by Arcelus 
et al., (2005), among many others, as a replacement for another decision variable, namely the order 

quantity. It represents the expected level of leftover and shortages, generated by the demand uncertainty 

and by the retailer’s optimal policies. Its inclusion simplifies the interpretation of the findings of the 
current study and the derivations of the optimality conditions.  

The retailer’s profit-maximizing objective 

The retailer profit function is decomposable into two parts, depending upon whether the retailer order 

quantity exceeds or understates the demand for the product. If the first, then q exceeds D and the retailer 
sells D units at p per unit, disposes of the rest at a salvage value of v per unit and incurs an acquisition 

cost of c for each of the q units ordered. If the second, q is below D, in which case the retailer buys and 

sells the q units at a profit margin of (p-c) per unit, acquires a fraction Ω of the shortage demand at a 
premium d per unit, sells it at (p-r), the regular selling price, p, net of the per unit rebate offered, r, and 

pays a shortage penalty of s per unit on the rest of the merchandise. Formally, the functional form of the 

retailer’s profit function, π(p,q,r), is as follows: 
 

  DqifqDsqDdcrpqcp

DqifDqvcqpDrqp
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       (4) 

The objective is to find the levels of p, q and r that maximizes E(p,q,r), the retailer’s expected profit. 

Using (3) and (4), it can be readily seen that E may be written as follows: 
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First-order optimality conditions: 
To simplify the explanation, only the additive-error/linear-demand case will be discussed. The 

multiplicative case can be developed along the same lines. Let QrpiiEEi ,,,/'  be the first derivative 

of the expected profit with respect to each of the decision variables. Setting these derivatives to zero, we 

obtain the following first-order optimality conditions.  
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Where 
'
p and

'
r are defined in (3). The optimality conditions in (6) have straightforward economic 

interpretations. All represent tradeoffs between profit gains and losses associated with unit changes in p, r 

and q, respectively. With respect to the first, a one-dollar increase in price generates (i) a profit increase 

of $(g+μ) from the units sold: (ii) minus a loss of $
'
pg (p-c), from the decrease in demand caused by the 

price increase; (iii) minus an opportunity cost of the shortages not sold even with the emergency order; 
and (iv) opportunity cost on the decrease of the fill rate due to the price increase. As for the second, a one-

dollar increase in the in the shortage rebate, r, results in (i) an increase in profits from the associated rise 

in the fill rate, 
'
r >0, from (3); and in (ii) an increase in the rebate costs from the back-logged end-

customers purchasing from the emergency order. The third condition indicates that a one-dollar increase 

in the stocking factor results from the marginal profit changes in the expected leftovers, together with the 
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opposite weighted marginal profits in the expected shortages, with the weights representing the 

percentage of returning and not returning customers.  

Numerical Analysis 
This section presents a numerical illustration of key properties of the model just described, to highlight 

the main features of the various solutions proposed in the paper. Given the central objective of the paper, 

our numerical analysis centers on the impact of fluctuations in power m of the fill rate function, upon the 
fill rate, Ω, and through it, upon the retailer’s profit-maximizing pricing, ordering, rebate policies. All 

computations were carried out with MAPLE’s Optimization toolbox.  

Base-case numerical structure 

The starting point consists of two sets of examples that serve as the base-case for the analysis of this 
section. The first (second) set, denoted by AL (MI), assumes the deterministic demand, g, to be linear (iso-

elastic) and its error, additive (multiplicative), i.e. 

demandtotalMIforp

demandtotalALforppD

,10,0,

,0,0,)(

100

1010
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For comparability purposes, this section operates with the parameter values of Patel and Gor (2013), to which 

suitable values for the remaining parameters have been added. These values appear in Table 2 (N. D.). In this 

way, any sensitivity analysis can be carried out by adroit manipulation of the appropriate parameter values for 

any of the components of the base-case.  

Further for maximum comparability among probability distributions, all cases are related to a random variable 

uniformly distributed  and normal distributed over the interval (-3,500, 1,500), for the AL demand model and 

(0.7, 1.1), for its MI counterpart. Either support interval describes the normal distribution completely.  

Base-case numerical results 
Having described the nature of the numerical structure that gives rise to the parameter values of the AL and MI 
components of the base case, we now discuss the numerical results. Unless otherwise stated, we concentrate 

our remarks on the AL demand case. As mentioned latter on in this section, the results for the MI case can be 

interpreted in similar fashion.  

Table 2: Numerical Analysis: Base Case Optimal Policies (Normal distribution) 
DISTRIBUTION  Support, mean and Standard deviation 

NORMAL  DISTRIBUTION 

Additive Error and Linear Demand 

Multiplicative Error and Iso-elastic demand 

support [A,B] 

[-3500, 1500] , Mean = -1000, SD = 1440  

[0.7, 1.1],         Mean = 0.9 , SD = 0.07 

Additive Error Linear Demand 

Parameter values: γ0 =100000 ;  γ 1  =1500 ;  c = 35;  d = 3;  v = 10;  s = 3 

Profit p q Λ Φ 
346866 50.36 23295 245 399 

Multiplicative Error Iso-Elastic Demand 

Parameter values: γ0 = 500000000;  γ 1  = 2.5;  c = 35;  d = 3;  v = 10;  s = 3 

Profit p q Λ Φ 
377413 59.90 16290 538 452 

 

Numerical Example and Interpretations  
The optimal results using MAPLE for the fill rate model with varied powers on r/p are shown in Table 3, 

(N.D.). The reader can refer to Patel and Gor (2013) for comparability purposes with the uniform distribution 

case. Both the cases Additive Error Linear Demand and Multiplicative Error Iso-elastic Demand are 

showcased to highlight the variations in the optimal solutions too. The following observations and 

interpretations are made: 

(a) The optimal policy for the fill rate model with m=0.5, as shown in row 1 of Table 3(N. D.) in Additive 

Error Linear Demand case, consists of the retailer acquiring q*=23,223 units at a unit cost of c=$35 and selling 

them at a unit price of p*=$50.39. With respect to the fill rate, approximately Ω
*
= 23% of the shortages are 

recaptured at an extra purchasing cost of d=$3.00 to the retailer, who allows a rebate of r*=$2.79 per unit 
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backlogged. Afterwards, all unsold units, i.e. , will be assigned a unit shortage penalty of 

s=$3.  

On the other hand, when demand falls below the q*=23,223 units ordered and all purchased at the cost of 

c=$35 per unit, D units are sold at the regular unit price of p*=$50.39 and the remaining, at the salvage value 

of v=$10.00 per unit.  

The resulting optimal policy is π*[p*, q*, r*]=$347405 [50.39, 23223, 2.79].  

As shown in Table 2, these results contrast with the optimal solution for the AL certainty case of π*[p*; q*] 

=$346866 [$50.36; 23,295] 

(b) Similar interpretation follows for the other models in the Additive Error Linear Demand case, where the 

power on r/p increases Table 3(N. D.). The increase in the power of the fill rate function tends to increase the 

optimal order quantity and the rebate, whereas decreases selling price as well as profits. 

(c) Table 3(N. D.) also gives results for the MI case. Observe though that unlike its Additive Error Linear 

Demand counterpart, in this case, increase in the power of the fill rate function, tends to increase the order 

quantity and the rebate and also the selling price. Profits decrease with the increase in the power of the fill rate 

function. 

Table 3: Optimal Policies for lost sale recapture model with fill rate Ω=(r/p)
m

  (N.D)
 

Additive Error Linear Demand 

M Profit p q r Ω Λ Φ 

0.5 347405 50.39 23223 2.79 0.23 230 420 

1 347006 50.37 23273 4.18 0.08 241 404 

2 346866 50.36 23295 0.00 0.00 245 399 

3 346866 50.36 23295 0.00 0.00 245 399 

Multiplicative Error Iso-Elastic Demand 

M Profit p q r Ω Λ Φ 
0.5 380499 59.77 16178 8.25 0.37 442 556 

1 378631 59.88 16225 12.44 .020 499 490 

2 377704 59.91 16263 16.60 0.07 528 460 

3 377498 59.91 16279 18.68 0.03 535 454 

 

Sensitivity Analysis 
Table 4 (N.D.) describes the sensitivities of the optimal policies to the change in the salvage and shortage costs 

in the Additive Error and Linear Demand case. Corresponding results for the Iso-elastic demand and 

multiplicative error case can be easily computed. The primary objective to carry out the sensitivity analysis is 

to observe the directional change in the short ages and the leftover values. Observe that, through Table 6 and 7, 

we have tried to construct examples where the relationship between shortages and leftovers is Λ
*
> Φ

*
as well as 

Λ
*
< Φ

*
. 

Table 4: Sensitivities to the salvage and shortage costs in Additive Error Linear Demand Case for 

=1 (N.D.) 
Linear Demand Additive Error Case for m=1 

v s 
π

*

 p
*

 q
*

 r
*

 Ω
*

 Λ
*

 Φ
*

 

16  3 348908 50.40 23349 7.70 0.152 292 341 

17 3 349207 50.40 23370 7.70 0.152 305 327 

18 3 349520 50.40 23393 7.70 0.152 320 313 

19 3  349848 50.41 23417 7.70 0.152 335 298 

20 3  350192 50.41 23242 7.70 0.152 352 283 

21  3  350554 50.42 23470 7.71 0.152 371 267 

Linear Demand Additive Error Case for m=1  

10 10  345207 50.40 23346 11.20 0.22 295 338 

10 11  344949 50.40 23358 11.70 0.23 303 330 

10 12  344700 50.41 23370 12.20 0.24 311 322 

10  13  344460 50.41 23381 12.70 0.25 318 314 



International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) 

An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 

2014 Vol. 4 (1) January-March, pp. 26-33/Gor and Patel 

Research Article 

© Copyright 2014 | Centre for Info Bio Technology (CIBTech)  32 

 

10  14  344229 50.41 23392 13.20 0.26 326 307 

10  15 344006 50.41 23403 13.70 0.27 333 300 

Next, as shown in Table 5, we perform sensitivity analysis to the change in the support values [A,B] for 

the Normal  distribution for the fill rate model with power m=1. Similar sensitivities can be performed for 

various other values of m, as well as support structures. 
 

Table 5: Sensitivities to the Normal Distribution Support Changes: CASE m=1 

 Linear Demand and Additive Error 

SUPPORT Mean 
π

*

 p
*

 q
*

 r
*

 Ω
*

 Λ
*

 Φ
*

 

-3500,1500  -1000 347346 50.37 23245 7.68 0.15 232 418 

1500,3500  2500 411085 51.61 25006 8.30 0.16 101 166 

1500,5500  3500  421745 51.90 25518 8.45 0.16 214 344 
-5500,1500  -2000 325830 49.98 22731 7.49 0.14 339 632 

-1500,3500  1000 378773 51.04 24257 8.02 0.15 239 408 

Iso-elastic Demand and Multiplicative Error 
.7,1.1 0.9 378631 59.88 16225 12.44 0.20 499 490 
.8,1.2  1.0 423471 59.71 18146 12.35 0.20 500 495 

.6,1.0 0.8 333803 60.08 14305 12.54 0.20 497 483 

.6,1.2  0.9 367858 60.61 15769 12.80 0.21 709 670 

.8,1.4  1.1  457448 60.17 19605 12.58 0.20 714 690 

 

Table 6, shows the percentage change in the optimal policies when for capturing the demand errors, the 

normal distribution is used instead of the uniform distribution (Patel and Gor, 2013). 
 

Table 6: % change in the Base Case Optimal Policieswhen N. D. used instead of U. D. 

Additive Error Linear Demand  

Dist Profit p q Λ Φ 

U. D. 339096 50.22 23276 444 836 

N. D. 346866 50.36 23295 245 399 

% CHANGE 2.29↑  0.28↑  0.08↑  44.81↓  44.81↓  

Multiplicative Error Iso-Elastic Demand  

Dist Profit p q Λ Φ 

U. D. 356420 61.42 15496 988 713 

N. D. 377413 59.90 16290 538 452 

% CHANGE 5.88↑  2.47↓ 5.12↑  45.54↓  36.6↓  

 

Some Concluding Comments 
The primary contribution of this paper has been to consider the impact upon the ordering and pricing 

policies of a newsvendor-type, profit-maximizing retailer, faced with the possibility of backordering at 

least some of the shortages incurred from demand underestimation, by offering some rebate incentives for 
waiting. The backlog fill rate, representing the probability of the end-customers returning to satisfy their 

unfilled demand, is modelled as a function of the size of the rebate offered relative to the selling price. 

The decision variables are the selling price, the order size and the rebate offered as an incentive to satisfy 

at least a portion of the unfulfilled demand. Sensitivities of the demand errors in the form of normal 
distribution rather than the uniform distribution serve as an extension to the previous work by the authors. 
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