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ABSTRACT 

The heart of the extended rough set theory is the generalization of the notion of the standard set inclusion 

degree. Considering the equivalent relationship between equivalence class in rough set theory and concept 
in concept lattice, we will study a classification problem of undefinable object set (undefinable object set 

is the object set that is not an extension) in concept lattice. First, with the definition of inclusion degree, 

we propose a definition of approximation distance. Second, we introduce an algorithm to vectorize a set. 
Third, in a context, with the assistance of the algorithm above, we find out an algorithm to calculate a 

closest extension to an undefinable object set. We also use an example to illustrate the feasibility of this 

algorithm. Finally, we conclude this paper and point out the future works. 
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INTRODUCTION 
Rough set theory is proposed by Pawlaw (1982) based on equivalence relations for handling the inexact, 

incomplete and uncertainty data. It is widely used for knowledge classification and rule learning (Dai, 

2012; Miao, 2011). Owing to the restrictions of equivalence relations, classical rough set has large 
limitations in its application. On the other hand, in classical rough set model, the classification is fully 

correct and certain, and all conclusions are only applied to the set of objects. Therefore, as a 

generalization, Ziarko (1993) provided variable precision rough set model by introducing the measure of 

the relative degree of misclassification in classical rough set model, aimed at the classification problems 
involving uncertain and imprecise information. Moreover, some researchers have more development 

based on variable precision rough set model.  

Xu and Zhang, (2013) combined the algorithm -upper and -lower distribution reduction in variable 
precision rough sets with the characteristics of context in concept lattice, and proposed an algorithm of 

concept lattice reduction based on variable precision rough set. Mao and Kang (2015) presented a 
definition of lower and upper approximations in concept lattice and generated the lower and upper 

approximations concept of concept lattice. Zhu and Zhu (2014) proposed a variable precision covering-

based rough set model based on functions by introducing misclassification rate functions and presented 

the concepts of the -lower and -upper approximations. 

Concept lattice theory is proposed by Wille (1982). Utilized the mapping relationship between objects 
and attributes from concepts, all the concepts constitute a concept lattice. In recent years, as an effective 

tool for knowledge classification and learning, concept similarity is introduced. Some scholars have 

carried on the thorough research on concept similarity measure. Huang et al., (2015) have introduced a 
bounded transitive similarity graph based on FCA concept similarity computing method in order to 

reduce the size of computing similarity by means of similarity graph. Clobanu and Vaideanu (2014) put 

forward new types of similarity relations between objects and attributes in fuzzy attribute-oriented 
concept lattices and analyzed the properties. Huang et al., (2015) proposed a semantic information 

content based FCA concept similarity computation method.  

Inclusion degree takes advantage of the relationship between sets. It focuses on set-inclusion problems, 

but its application scope is limited. In context, concept similarity can only compute the similarity between 
concepts, and does not capture the similarity between concept and undefinable object. In this paper, we 

combine the inclusion degree in variable precision rough set and the equivalent relationship between 

equivalence class and extension, and put forward an approximation distance operator. We calculate the 



International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) 

An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 

2015 Vol. 5 (3) July- September, pp. 7-13/Mao et al. 

Research Article 

© Copyright 2014 | Centre for Info Bio Technology (CIBTech)  8 

 

degree of approximation between undefinable object and an extension in concept lattice. Aimed at solving 

the classification problem of undefiable object set in concept lattice, two algorithms are proposed 

The content is arranged as follows: Section 2 reviews basic definitions of variable precision rough set and 
concept lattice. In Section 3, we first propose a definition of approximation distance. Afterwards, 

vectorization process is introduced. After that, we provide an algorithm to calculate the closest extension 

to an undefinable object set. And then, an example is given to show the effectiveness of this algorithm. 
The paper is concluded in Section 4. 

Preliminaries 

To facilitate our discussion, this section reviews some notions related to variable precision rough set and 

concept lattice. More details for variable precision rough set, please see (Pawlak, 1982), and for concept 
lattice, please refer to (Davey and Priestley, 2002). 

Variable Precision Rough Set 

This subsection introduces some contents for variable precision rough set. In this paper the parameter  

(0≤<0.5) denotes the degree of misclassification.  

Definition 1 (Chmielewski and Grzymala-Busse, 1996) Let U be a finite set. Let X,YU, and X,Y  . 

Then we define inclusion degree as follows: 

µ(X,Y)= card(XY)/card(X),                                     (1) 
where card(Z) denotes the set cardinality of Z .  
Remark 1 The inclusion degree µ of two sets is defined as the degree of one set contained in another set. 

In general, the following conditions are satisfied (Zhang and Leung, 1996): 

(1) 0 µ(X,Y)1; 

(2) XY if and only if µ(X,Y)=1; 

(3) If XYZ, then µ(X,Z)µ(X,Y). 
Based on the inclusion degree, the measure c(X, Y) of the relative degree of misclassification of a set X 

with respect to a set Y is defined.   

Definition 2 (Ziarko, 1993) We defined c(X,Y) as follows: 

c(X,Y)=1-card(XY)/card(X)  if card(X)>0,                              (2) 

c(X,Y)=0                  if card(X)=0,                                (3) 
where card(Z) denotes the set cardinality of Z . 

The specified majority requirement the admissible level of classification error  must be within the range 

0<0.5. In variable precision rough set the notion of -lower and -upper approximation as follows.  

Definition 3 (Ziarko, 1993) Let X  U, its generalized notion of -lower approximation is defined by: 

XR 
= {ER*| c(E,X)};                                     (4) 

the -upper approximation of a set X  U is defined as: 

XR = {ER*| c(E,X)<1-},                                   (5) 

where E is an equivalence class, and R*={E1, E2,…, En } is an set of equivalence class on U.  

Remark 2 In fact, the -lower approximation of a set X can be interpreted as the collection of all those 

elements of U which can be classified into X with the classification error not greater than. Similarly, the 

-upper approximation of the set X is the collection of all those elements of U which can be classified into 

X with the classification error less than 1-.  

Concept Lattice  
Concept lattice deals with visual presentation and analysis of data (Yao and Chen, 2006; Ganter and 

Wille, 1999; Xu et al., 2009) and focuses on the definability of a set of objects based on a set of attributes, 

and vice versa.  
Definition 4 (Davey and Priestley, 2002) A context is a triple (G,M,I) where G and M are sets and I 

G×M. The elements of G and M are called objects and attributes respectively. As usual, instead of 

writing (g,m)I, we write gIm
 
and say ‘the object g has the attribute m’. 

For AG and BM, we define  
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A={mM |(gA)gIm};                                        (6) 

B={gG |(mB)gIm}.                                        (7) 

From Definition 4, Davey (Davey and Priestley, 2002) points that A is the set of attributes common to all 

the objects in A, and B is the set of objects possessing the attributes in B.  

Definition 5 (Davey and Priestley, 2002) For AG and BM, the pair (A,B) is called a concept of (G,M,I) 

if A=B and B=A, and A is the extension of the concept, B is the intension of the concept. 
Definition 6 (Davey and Priestley, 2002) (1) The set of all concepts from a context (G,M,I)

 
is

 
called a 

concept lattice and is denoted by:   

B(G,M,I)   MBGABA  ,|,{ and A=B, B=A}.                       (8) 

(2) For concepts (A1,B1) and (A2,B2) in B(G,M,I), we write (A1,B1) (A2,B2), if A1A2. Also A1A2 implies 

that A1 A2, and the reverse implication is also valid, because A1 = A1 and A2=A2. We therefore have 

(A1,B1)  (A2,B2)  A1A2   B1B2.                                (9) 

Lemma 1 (Davey and Priestley, 2002) The relation  is an order on B(G,M,I). We still call B(G,M,I), 

is a concept lattice. 

Definition 7(Zhi et al., 2008) In a domain ontology and a number of contexts (Gi, Mi, Ii), i=1… k, the 
similarity (Sim) of two concepts (A1,B1) and (A2,B2) are defined as follows: 

Sim((A1,B1), (A2,B2))=   211
2121 ll

cb
n

BB
a

m
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,                 (10) 

where a+b=1, c>0,  ,,max 21 AAm   21 ,max BBn  . l1, l2 are the value of depth in concept lattice, 

c=0.01 is a numerical value to reflect the depth of similarity.  

Relationship between Equivalence Class and Concept   

Xu (Xu et al., 2009) proposed that a concept in a concept lattice is corresponding to the equivalence class 

in rough set. Let x be a set and [x] be an equivalence classes for an equivalence relation defined on x. 

Lemma 2 (Xu et al., 2009) Let (G,M,I) be a context, PM and P . The following statements hold:     

(1) Let(A,B)B(G,M,I). Then A=[x]B is correct for any xA. 

(2) ([x]P, [x]P)B(G,M,I) is correct for any xG. 
Lemma 2 shows that any extension of a concept for a given context must be an equivalence class of a 

rough set. Conversely, any equivalence class in a rough set is an extension in concept lattice.  

Algorithm of Classification 

In this section, we solve classification problem of an undefinable object set (undefinable object set is the 

object set that is not an extension). Based on inclusion degree and similarity concept, we first propose 
approximate distance in concept lattice. It can effectively reflect the degree of similarity between an 

undefinable object set and an extension in concept lattice. To realize this idea completely, a vectorization 

process and classification algorithm is introduced. At last, an example is given to show the feasibility of 
this algorithm. 

Definition of Approximation Distance 

The paper (Mao and Kang, 2015) proposed the notions of the -upper and -lower approximation 

operators in concept lattice. In this paper, based on the -upper and -lower approximation, we will 
propose a method to classifing an undefinable object set, and find out attribute set which are shared by 

this object. Next, we will present a new algorithm to seek out the closest extension to an undefinable 

object set. Before introducing the algorithm, we first give the definition of approximation distance.  

Definition 8 Let  neeeE ,...,, 21 ,  nxxxX ,...,, 21 be two n-dimensional vectors. The approximation 

distance (Adis(E,X)) of X relative to E is defined as: 
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Remark 3 Definition 8 uses second norm to calculate the distance between two vectors in order to divide 

the length of the vector E and calculate the approximation distance. 

The following example will illustrate Definition 8. 
Example 1 Let E1=(0.5, 0), E2=(1, 1) and X=(1, 1.25) be three vectors in a two-dimensional vector space. 

We can use the approximation distance to finding out which one is closest to X between E1 and E2.  

From Definition 8, we can obtain:  

   
   

 
693.2

5.0

25.1015.0
,

2

22

1 


XEAdis , 

 
   

   
177.0

11

25.1111
,

22

22

2 



XEAdis . 

Comparing the above calculations, we know that X is closest to E2. 

Algorithm Process 
For a given context (G,M,I), we can use NextClsoure Algorithm (Thomas et al., 2005) to obtain all the 

extensions {Ej , (j=1,2,…,m)}. We know that the complexity of NextClsoure Algorithm is delayed with 

linear time. Hence, |{Ej , (j=1,2,…,m)}|=m is unchangeable for (G,M,I). For a set XG, though we can use 
Definition 8 to compute the value of X relative to Ej, Definition 8 asks both of X and Ej to appear as 

vectorized forms. Thus, we need to introduce an algorithm to realize vectorization process for a set. 

Let (G,M,I) be a context, where G={a1, a2,…, an}, n=|G| and aiaj, ij; i,j=1,2,…,n. For Y={g1, g2,…, 

gm}G, mn. Then we will vectorize Y by Algorithm 1: 
Algorithm 1  Vectorization of a subset of G. 

Input G= {a1, a2,…, an} and Y={g1, g2,…, gm}G. 

Output The vectoring expression of Y in n-dimensional vector space.  
Step 1. Y=(0,..., 0), that is, Y is the zero vector in n-dimensional vector space. i:=1, j:=1. 

Step 2. If i<n+1, j<m+1, then go to Step 3.  

Otherwise, go to Step 5.  
Step 3. If ai=gj, then Y:=Y+(0,...,0, i, 0, ..., 0), and i:=i+1, j:=j+1, go to Step 2,  

where (0,...,0, i, 0, ..., 0) is the vector in n-dimensional vector space such that every component is 0 except 

the i-th is i.  
Otherwise, go to Step 4. 

Step 4. If ai≠gj, then Y:=Y, and i:=i+1, j:=j, go to Step 2. 

Step 5. Stop. 

Remark 4 (1) In Algorithm 1, according to YG, we confirm mn. This follows that in Algorithm 1, i 
can not be larger than n, and j is not larger than m. Hence, after finite steps, Algorithm 1 will stop. In 
other words, we can obtain the vectoring representation of a subset Y in G.  

(2) The algorithm complexity analysis is as follows: both i and j are less than or equal to n. When 

repeating i and j, we only need to compare the size between i and n+1, and the size between j and m+1. 

Therefore, the algorithm complexity is O(n).  
We will present an example to illustrate Algorithm 1. 

Example 2 Let (G,M,I) be a content in which G={a1, a2, a3, a4, a5} satisfies aiaj, ij; i, j=1,2,3,4,5. Let 

Y={g1,g2}G, where g1=a2, g2=a4. Since |G|=5, we say n=5. We will establish the expression of Y on the 
5-dimensional vector space by Algorithm 1. 

According to i=1, j=1, we put Y=(0,...,0). Since a1= a1 but g1=a2, we obtain a1≠g1. Then Y:=Y. Hence we 

set i:=i+1=1+1=2, j:=j=1. Owing to 2<5+1, 1< 2+1 and Step 2, we continue the vectorizing process;  
According to i=2, j=1, Y=(0,...,0), we may easily see a2=a2 and g1=a2. This follows ai=gj=a2. In light of   

Step 3 in Algorithm 1, we obtain Y:=Y+(0,2,0,0,0)=(0,2,0,0,0). Hence we set i:=i+1=2+1=3, j:=j+1=1+1 

=2. Owing to 3<5+1, 2<2+1, and Step 2, we continue the process; 

According to i=3, j=2, Y=(0,2,0,0,0), we know a3=a3 but g2=a4. So, we obtain a3≠g2. By Step 4 in 
Algorithm 1, put Y:=Y. Then i:=i+1=3+1=4, j:=j=2. Because of 4<5+1, 2<2+1 and Step 2, we can go on; 
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According to i=4, j=2, Y=(0,2,0,0,0), since a4=a4 and g2=a4, this follows ai=gj=a4. Then we use Step 3 

and receive Y:=(0,2,0,0,0)+(0,0,0,4,0)=(0,2,0,4,0). Hence we set i:=i+1=4+1=5, j:=j+1=2+1=3. Owing to 

4<5+1, 32+1 and Step 2, stop this process. We obtain Y=(0,2,0,4,0). 

Let Ej be an extension (j=1,2,…,m). We can use Algorithm 1 to vectorize jE as  jnjj eee ,...,, 21 . Let X  G. 

We can also use Algorithm 1 to vectorize X as  nxxx ,...,, 21 . Next, based on Definition 8, we will present 

an algorithm to calculate which Ej is closest to X (j=1,2,…,m). 

Algorithm 2 To calculate which extension is closest to a subset X, where XG. 

Input: n-dimensional vector  jnjjj eeeE ,...,, 21  (j=1,2,…,m),  nxxxX ,...,, 21 and r1=Adis(E1,X). 

Output: The closest vector E to X. 

Step 1. i=1, E:=E1, r:=r1. 

Step 2. If i<m+1, then go to Step 3. 
Otherwise, go to Step 5. 

Step 3. If ri r, then r:=min{ ri , r}, E:=Er, and i:=i+1, go to Step 2. 
Otherwise, go to Step 4. 

Step 4. If r< ri, then r:=r, E:=Er, and i:=i+1, go to Step 2. 

Step 5. Stop.  
Remark 5 (1) In Algorithm 2, according to |G|< , we confirm |m|< . This follows that i in Algorithm 2 

can not be larger than m. Hence, after finite steps, Algorithm 2 will stop. In other words, we can calculate 

the closest vector E to X.  
(2) The complexity of Algorithm 2 is analyzed as follows: i is less than or equal to m, and when repeating 

i, we just need to compare the size between i and m+1; besides, m|G|; so the algorithm complexity is 
O(m).  

(3) The result of Algorithm 2 is a vector Er which is closest to X. Actually, we can apply the following 

way to express Er as set language.  

Let Er=( rnrr eee ,...,, 21 ). If rje =0, delete it; if rje 0, remain it. Then we can express Er as { tktt eee ,...,, 21 }, 

where tje { rnrr eee ,...,, 21 } and tje 0, (j=1,2,...,k; t1<t2<...<tk).  

Therefore, the corresponding extension{Er} is found out.  
Theorem 1 When Algorithm 2 stops, the output E must be the closest vector to X. 

Proof For a context (G,M,I), and {Ej: j=1,2,…,m} be all extensions of (G,M,I). The repetition i in 

Algorithm 2 satisfies im, therefore this algorithm can be stop after finite steps.  

For XG, from the Definition 8, we know that the smaller value of ri=Adis(Ei, X), the accurate of the 
result. In the processing, each repetition is compared the values of r and ri, and set r:=min{ ri , r}, output 

E:=Er. Thus the output E must be the closest vector to X. 
We will present an example to illustrate Algorithm 2. 

Example 3 Let (G,M,I) as Table 1, where the meaning of each attribute is different document and each 

object is a keyword. Let X={3,5,6}G. Then, we can use Algorithm 1 and Algorithm 2 to find out the 
closest extension to X. 

 

Table 1: A context 

 a b c d e f g h i 

1.d1 × ×     ×   

2.d2 × ×     × ×  
3.d3 × × ×    × ×  

4.d4 ×  ×    × × × 

5.d5 × ×  ×  ×    
6.d6 × × × ×  ×    

7.d7 ×  × × ×     

8.d8 ×  × ×  ×    
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For this context, we can use the NextClsoure Algorithm to obtain the extensions of (G,M,I): 

 6,7,81,2,3,4,5,1 E ,  1,2,3,42 E ,  1,2,3,5,63 E ,  3,4,6,7,84 E ,  5,6,7,85 E ,  1,2,36 E

,  2,3,47 E ,  6,858 ，E ,  6,7,89 E ,  2,310 E ,  4311 ，E ,  6512 ，E ,  6313 ，E , 

 8614 ，E ,  415 E ,  316 E ,  617 E ,  718 E ,  19E . 

Through Algorithm 1, we obtain:  

 6,7,81,2,3,4,5,1 E ,  0,0,01,2,3,4,0,2 E ,  6,0,01,2,3,0,5,3 E ,  6,7,80,0,3,4,0,4 E ,

 6,7,80,0,0,0,5,5 E ,  0,0,01,2,3,0,0,6 E ,  0,0,00,2,3,4,0,7 E ,  ,0,80,0,0,05,68 E ,

 6,7,80,0,0,0,0,9 E ,  0,0,00,2,3,0,0,10 E ,  4,0,0,0,00,0,311 ，E ,  6,0,00,0,0,0,512 ，E ,

 6,0,0,0,00,0,313 ，E ,  8,0,60,0,0,0,0,14 E ,  0,0,00,0,0,4,0,15 E ,  0,0,00,0,3,0,0,16 E ,

 6,0,00,0,0,0,0,17 E ,  0,7,00,0,0,0,0,18 E , 19E .  

Let   GX  6,5,3 . We use Algorithm 1 to obtain  6,0,0,5,0,0,0,3X .  

Next, we use Algorithm 2 to compute the closest extension E to X: 

Since we get all the extensions above, we can easily know m=19. 

According to i=1, E:=E1=(1,2,3,4,5,6,7,8), r:=r1=Adis(E1,X)0.811. We set i:=i+1=1+1=2. Then from 

Definition 8, r2=Adis(E2,X)1.652. Since r<r2, in light of Step 4 in Algorithm 2, and then r:=r, 
E:=E1=(1,2,3,4,5,6,7,8). We set i:=i+1=2+1=3. Because of 3<19+1 and Step 2, we continue the process; 

According to i=3, E:=E1=(1,2,3,4,5,6,7,8), from Definition 8, we know r3=Adis(E3,X)0.258. Since r3r, 
by Step 3 we put r:=min(r3, r)= r3, E:=E3=(1,2,3,0,5,6,0,0). Let i:=i+1=3+1=4. Owing to 4<19+1 and Step 

2, we go on; 

According to i=4, E:=E3=(1,2,3,0,5,6,0,0), r4=Adis(E4,X)0.947, we easily obtain r<r4. By Step 4, we 
know r:=r, E:=E3=(1,2,3,0,5,6,0,0). Let i:=i+1=4+1=5. For 5<19+1, we can continue. 

Repeating the above process, we finally get that E3=(1,2,3,0,5,6,0,0) is the result. And by Remark 5 (3), 

we know the corresponding extension E3={1,2,3,5,6} is the needed result. Therefore the extension E3 is 

closest to X. 

 

CONCLUSION 

Nowadays, the application of classification rules has been widely increasing. The thought of classification 
has been extensively used in medical diagnosis, weather forecasting, market analysis, books retrieval and 

so on. In this paper, we have presented a definition of approximation distance based on inclusion degree 

and similarity theory. In addition, using the equivalent relationship between concepts in the concept lattice 

and the equivalence classes in rough set, we have proposed an algorithm to classify the undefinable object 
set to a closest extension.  

We may indicate that approximate distance operator is not mature, since this operator can only calculate 

the quantized sets. Hence, we need to research on the method of approximate distance to calculate the 
non-quantization sets in the further. How to simplify the calculation is also the goal of future research. 
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