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ABSTRACT 
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INTRODUCTION 

Let 𝑀 be a smooth Riemannian manifold of dimension 𝑛 with the Riemannian metric 𝑔, ∇ - the Levi-

Civita connection, 〈∙,∙〉 - inner product defined by the Riemannian metric 𝑔. 

We denote by 𝑉(𝑀) the set of all smooth vector fields defined on 𝑀, through a [𝑋, 𝑌] Lie bracket of 

vector fields 𝑋, 𝑌 ∈ 𝑉(𝑀). The set 𝑉(𝑀) is Lie algebra with Lie bracket. 

Throughout the paper, the smoothness means smoothness of a class 𝐶∞. 

Definition 1: Differentiable mapping 𝜋:𝑀 → 𝐵  of a maximal rank, where 𝐵  is smooth manifold of 

dimension 𝑚, 𝑛 > 𝑚, is called submersion. 

By the theorem on the rank of a differentiable function for each point 𝑝 ∈ 𝐵  the full inverse image 

𝜋−1(𝑝) is a submanifold of dimension 𝑘 = 𝑛 −𝑚. Thus, submersion 𝜋:𝑀 → 𝐵 generates a foliation 𝐹 of 

dimension 𝑘 = 𝑛 −𝑚, whose leaves are submanifolds 𝐿𝑝 = 𝜋
−1(𝑝), 𝑝 ∈ 𝐵. 

To the study of the geometry of submersions were devoted numerous papers (Zoyidov and Tursunov, 

2015; Reinhart, 1959), in particular in paper O'Neil, (1996) derived the fundamental equations of 

submersion. 

Let 𝐹 be a foliation of dimension 𝑘, where 0 < 𝑘 < 𝑛 (Gromoll and Walschap, 2008). We denote by 𝐿𝑝 

leaf of foliation 𝐹, passing through a point 𝑞 ∈ 𝑀, where 𝜋(𝑞) = 𝑝, by 𝑇𝑞𝐹 tangent space of leaf 𝐿𝑝 at the 

point 𝑞 ∈ 𝐿𝑝, by 𝐻(𝑞) orthogonal complement of subspace 𝑇𝑞𝐹. 

As result arise sub bundle's 𝑇𝐹 = {𝑇𝑞𝐹} , 𝑇𝐻 = {𝐻(𝑞)}  of the tangent bundle 𝑇𝑀  and we have an 

orthogonal decomposition 𝑇𝑀 = 𝑇𝐹 ⊕ 𝑇𝐻. 

Thus every vector field 𝑋  is decomposable as: 𝑋 = 𝑋𝑣 + 𝑋ℎ , where 𝑋𝑣 ∈ 𝑇𝐹 , 𝑋ℎ ∈ 𝑇𝐻 . If 𝑋ℎ = 0 

(respectively 𝑋𝑣 = 0), then the field 𝑋 is called as vertical (respectively horizontal) vector field. 

The submersion 𝜋:𝑀 → 𝐵 is said to be Riemannian if differential preserves lengths of horizontal vectors. 

As it is known those Riemannian submersions generate Riemannian foliation (Reinhart, 1959). 

We remark that foliation 𝐹 is called Riemannian if every geodesic, orthogonal in some point to leaves, 

remains orthogonal to leaves in all points. 

The curve is called as horizontal if it’s tangential vector is horizontal. 

Let 𝛾: [𝑎, 𝑏] → 𝐵 is smooth curve in 𝐵, and 𝛾(𝑎) = 𝑝. Horizontal curve �̃�: [𝑎, 𝑏] → 𝑀, �̃�(𝑎) ∈ 𝜋−1(𝑝) is 

called as horizontal lift of a curve 𝛾: [𝑎, 𝑏] → 𝐵, if 𝜋(�̃�(𝑡)) = 𝛾(𝑡) for all 𝑡 ∈ [𝑎, 𝑏]. 

The map 𝑆: 𝑉(𝐹) × 𝐻(𝐹) → 𝑉(𝐹), defined by the formula 𝑆(𝑈, 𝑋) = ∇𝑈
𝑣𝑋, is called second basic tensor, 

where 𝑉(𝐹), 𝐻(𝐹) set of vertical and horizontal vector fields respectively. 

At the fixed field of normal 𝑋 ∈ 𝐻𝐹, map 𝑆(𝑈, 𝑋) generates tensor field 𝑆𝑋 of type (1,1): 

𝑆(𝑈, 𝑋) = 𝑆𝑋𝑈 = ∇𝑈
𝑣𝑋 

Where, ∇𝑈
𝑣𝑋 is vertical component of vector field ∇𝑈𝑋. 

The tensor field 𝑆𝑋 defines the bilinear form 𝑙𝑋: 
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𝑙𝑋(𝑈, 𝑉) = 〈𝑆𝑋𝑈, 𝑉〉. 
The form 𝑙𝑋(𝑈, 𝑉) is called second basic form with respect to a normal vector field 𝑋. 

The tensor field 𝑆𝑋 is linear map and consequently it is defined by the matrix 𝑆(𝑈, 𝑋) = 𝐴𝑈. 

Horizontal vector field 𝑋 is called basic if vector field [𝑈, 𝑋] is also vertical for each vector field 𝑈 ∈
𝑉(𝐹). Eigenvalues of matrix 𝐴 is called the principal curvature of foliation 𝐹, when vector field 𝑋 is 

basic. If the principal curvatures are locally constant along leaf, then foliation 𝐹 is called isoparametric. 

Main Part 

In this paper we study geometry of some submersions, which arise at study of geometry of Killing vector 

fields. Geometry of vector fields is subject of numerous studies in connection its importance in geometry 

and other areas of mathematics (Zoyidov and Tursunov, 2015; Narmanov and Saitova, 2014; Gromoll and 

Walschap, 2008). 

Let's consider some set 𝐷 ⊂ 𝑉(𝑀), which contains finite or infinite number of smooth vector fields. For a 

point 𝑥 ∈ 𝑀 through 𝑡 → 𝑋𝑡(𝑥) we will denote the integral curve of a vector field 𝑋 passing through a 

point 𝑥 at 𝑡 = 0. Map 𝑡 → 𝑋𝑡(𝑥) is defined in some domain 𝐼(𝑥) ⊂ 𝑅, which generally depends on field 

𝑋 and point 𝑥. 

Definition 2: The orbit 𝐿(𝑥) of set 𝐷, passing through the point 𝑥, is defined as set of such points 𝑦 ∈ 𝑀, 

such that there exists 𝑡𝑖 ∈ 𝑅, and vector fields 𝑋𝑖 ∈ 𝐷 

𝑦 = 𝑋𝑘
𝑡𝑘 (𝑋𝑘−1

𝑡𝑘−1(… (𝑋1
𝑡1(𝑥))… )). 

In Sussmann (1973) it is proved that each orbit of a set of smooth vector fields has a differential structure 

of the smooth immersed sub manifold of 𝑀. 

Recall that the vector field 𝑋 on 𝑀 is called the Killing vector field, if the group of local transformations 

𝑥 → 𝑋𝑡(𝑥) consists of isometries (Narmanov and Saitova, 2014). 

Note that the Lie bracket of two fields of the field of Killing gives a field of Killing and a linear 

combination of Killing fields over the field of real numbers is also a field of Killing. 

Therefore, the set of all Killing vector field on the manifold 𝑀, denoted 𝐾(𝑀), generates a Lie algebra 

over the field of real numbers. It is known that the Lie algebra 𝐾(𝑀) is finite-dimensional. We will 

denote through 𝐴(𝐷) the smallest Lie subalgebra of algebra 𝐾(𝑀), containing set 𝐷. 

Since the algebra 𝐾(𝑀) finite, there exist vector fields 𝑋1, 𝑋2, … , 𝑋𝑚 that vectors 𝑋1(𝑥), 𝑋2(𝑥), … , 𝑋𝑚(𝑥) 
forms bases for the subspace 𝐴𝑥(𝐷) for each 𝑥 ∈ 𝑀. 

In Narmanov and Saitova (2014) proved the following theorem, which shows that each point in the orbit 

𝐿(𝑥0) can be reached from 𝑥0 by finitely many "switches" with the use of the vector fields 𝑋1, 𝑋2, … , 𝑋𝑚 

in a certain order. 

Theorem 1: Set of points of form 

𝑦 = 𝑋𝑚
𝑡𝑚 (𝑋𝑚−1

𝑡𝑚−1(… (𝑋1
𝑡1(𝑥0))… )), 

Where, (𝑡1, 𝑡2, … , 𝑡𝑚) ∈ 𝑅
𝑚, coincides with the orbit 𝐿(𝑥0). 

This theorem allows constructing various submersions 𝜋: 𝑅𝑚 → 𝐿(𝑥0)  using the vector fields 

𝑋1, 𝑋2, … , 𝑋𝑚 by the formula 

𝜋(𝑡1, 𝑡2, … , 𝑡𝑚) = 𝑋𝑚
𝑡𝑚 (𝑋𝑚−1

𝑡𝑚−1(… (𝑋1
𝑡1(𝑥0))… )). 

Let's consider the Killing vector fields 

𝑌1 =
𝜕

𝜕𝑥1
, 𝑌2 =

𝜕

𝜕𝑥2
, 𝑌3 = −𝑥3

𝜕

𝜕𝑥1
+ 𝑥1

𝜕

𝜕𝑥3
, 𝑌4 = −𝑥4

𝜕

𝜕𝑥2
+ 𝑥2

𝜕

𝜕𝑥4
 

on 𝑅4. It is easy to check that the basis of sub algebra 𝐴(𝐷) consists of following vector fields 

𝑋1 =
𝜕

𝜕𝑥1
, 𝑋2 =

𝜕

𝜕𝑥2
, 𝑋3 = −𝑥3

𝜕

𝜕𝑥1
+ 𝑥1

𝜕

𝜕𝑥3
, 

𝑌4 = −𝑥4
𝜕

𝜕𝑥2
+ 𝑥2

𝜕

𝜕𝑥4
, 𝑋5 =

𝜕

𝜕𝑥3
, 𝑋6 =

𝜕

𝜕𝑥4
 

and consequently the orbit 𝐿(𝑝) for each point 𝑝 ∈ 𝑅4 coincides with space 𝑅4. 
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We will define following submersion 𝜋: 𝑅6 → 𝑅4 with formula 

𝜋(𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6) = 𝑋4
𝑡4 (𝑋6

𝑡6 (𝑋2
𝑡2 (𝑋3

𝑡3 (𝑋5
𝑡5(𝑋1

𝑡1(𝑂)))))), 

Where, 𝑂 - origin of coordinates in 𝑅4. 
Theorem 2: There exists a Riemannian metric �̃� on 𝑅4 that: 

a) Map 𝜋: 𝑅6 → 𝑅4 is Riemannian submersion and it generates Riemannian foliation; 

b) Submersion 𝜋: 𝑅6 → 𝑅4 generates on 𝑅6 a foliation of zero curvature; 

c) Submersion 𝜋: 𝑅6 → 𝑅4 generates on 𝑅6 isoparametric foliation; 

d) (𝑅4, �̃�) is manifold of nonnegative curvature. 

Proof. 1) Mapping 𝜋 has the form 

𝜋(𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6) = (𝑥1, 𝑥2, 𝑥3, 𝑥4) 
where 

{
𝑥1 = 𝑡1 cos 𝑡3 − 𝑡5 sin 𝑡3 ,       𝑥2 = 𝑡2 cos 𝑡4 − 𝑡6 sin 𝑡4 ,
𝑥3 = 𝑡1 sin 𝑡3 + 𝑡5 cos 𝑡3 ,       𝑥3 = 𝑡2 sin 𝑡4 + 𝑡6 cos 𝑡4 ,

 

We show that the rank of the mapping 𝜋: 𝑅6 → 𝑅4 at each point 𝑞 = (𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6) is equal 4. 

The simple calculation shows, the Jacobi matrix of mapping 𝜋 has the form: 

𝐽(𝜋) =

(

 
 
 

cos 𝑡3 0 sin 𝑡3 0
0 cos 𝑡4 0 sin 𝑡4

−𝑡1 sin 𝑡3 − 𝑡5 cos 𝑡3 0 𝑡1 cos 𝑡3 − 𝑡5 sin 𝑡3 0
0 −𝑡2 sin 𝑡4 − 𝑡6 cos 𝑡4 0 𝑡2 cos 𝑡4 − 𝑡6 sin 𝑡4

−sin 𝑡3 0 cos 𝑡3 0
0 − sin 𝑡4 0 cos 𝑡4 )

 
 
 
. 

 

Since of each point 𝑝  four of the six vectors 𝑋1(𝑝) , 𝑋2(𝑝) , 𝑋3(𝑝) , 𝑋4(𝑝) , 𝑋5(𝑝) , 𝑋6(𝑝)  linearly 

independent, the rank of the Jacobi matrix is equal four. Therefore, for each point 𝑝 = (𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈
𝑅4 the full inverse image 𝜋−1(𝑝) is a two-dimensional submanifold in 𝑅6. 
In our case for a point 𝑝 = (𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ 𝑅

4 the full inverse image 𝜋−1(𝑝) has the form 

𝜋−1(𝑝) = 𝐿𝑝(𝑢, 𝑣) = (𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6) 
where 

𝑡1 = 𝑥1 cos 𝑢 + 𝑥3 sin𝑢 , 𝑡2 = 𝑥2 cos𝑣 + 𝑥4 sin𝑣 , 𝑡3 = 𝑢, 
𝑡4 = 𝑣, 𝑡5 = −𝑥1 sin𝑢 + 𝑥3 cos 𝑢 , 𝑡6 = −𝑥2 sin𝑣 + 𝑥4 cos 𝑣 ,   𝑢, 𝑣 ∈ 𝑅. 

It is easy to check that the foliation𝐹 , generated by the submersion 𝜋: 𝑅6 → 𝑅4 , consists of two-

dimensional surface in the 𝑅6, and the vector-speeds of curves 𝑢 and 𝑣 on this surface (a vertical fields) 

has the form 𝑈 = {𝑡5, 0,1,0,−𝑡1, 0} and 𝑉 = {0, 𝑡6, 0,1,0,−𝑡2} respectively. 

This vector fields is a Killing field. Really, it is known that the vector field 𝑋 = ∑ 𝜉𝑖
𝜕

𝜕𝑡𝑖

𝑛
𝑖=1  in 𝑅𝑛 is the 

vector field Killing if and only if the following conditions are satisfied (Narmanov and Saitova, 2014): 
𝜕𝜉𝑖
𝜕𝑡𝑗

+
𝜕𝜉𝑗

𝜕𝑡𝑖
= 0, 𝑖 ≠ 𝑗,

𝜕𝜉𝑖
𝜕𝑡𝑖

= 0, 𝑖 = 1,… , 𝑛. 

The vertical fields 𝑈, 𝑉 satisfies these conditions and consequently is a Killing fields. 

Thus foliation 𝐹 is a Riemannian. 

Let 𝛾: [𝑎, 𝑏] → 𝑅4, 𝛾(𝑎) = 𝑝 a smooth curve. Then for each point 𝑞 ∈ 𝜋−1(𝑝) there is it's horizontal lift 

�̃�: [𝑎, 𝑏] → 𝑅6 such that �̃�(𝑎) = 𝑞 (Zoyidov and Tursunov 2015). 

Let 𝑋, 𝑌 vector fields on 𝑅4, and 𝑋∗, 𝑌∗ - horizontal lifting of the vector fields, i.e. 𝑋∗, 𝑌∗ are horizontal 

vector fields on 𝑅6 and 𝑑𝜋(𝑋∗) = 𝑋, 𝑑𝜋(𝑌∗) = 𝑌. Since the vector field 𝑈 = {𝑡5,0,1,0, −𝑡1,0} and 𝑉 =

{0, 𝑡6, 0,1,0, −𝑡2}  are Killing fields, a inner product 〈𝑋∗, 𝑌∗〉  is constant along 𝐿𝑝 = 𝜋
−1(𝑝)  (O'Neil, 

1996). Hence, if we will put 〈𝑋, 𝑌〉(𝑝) = 〈𝑋∗, 𝑌∗〉(𝑞), where 𝑞 ∈ 𝐿𝑝 , 〈𝑋, 𝑌〉 is correctly defined inner 
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product, and we get Riemannian metric �̃� on 𝑅4 Concerning this Riemannian metric submersion 𝜋: 𝑅6 →
𝑅4 will be Riemannian. 

2) We will calculate sectional curvature of manifold 𝐿𝑝, in the two-dimensional direction, defined by 

vertical vectors 𝑈, 𝑉 at the point 𝑞 ∈ 𝐿𝑝 ⊂ 𝑅
6. 

By the formula O'Neill (O'Neil, 1996), for the Riemannian submersion 𝜋:𝑀 → 𝐵, sectional curvature 

𝐾, �̂� of manifold 𝑀 and the fiber 𝐿𝑝, are connected by the relation 

𝐾(𝑈, 𝑉) = �̂�(𝑈, 𝑉) −
〈𝛻𝑈
ℎ𝑈, 𝛻𝑉

ℎ𝑉〉 − ‖𝛻𝑈
ℎ𝑉‖

2

‖𝑈 ∧ 𝑉‖2
, 

Where, 𝑈  and 𝑉  are vertical vector fields of 𝑀 , 𝑈 ∧ 𝑉  – bivector constructed on vectors 𝑈, 𝑉 . 𝑈ℎ  - 

vertical complement of vector 𝑈. 

As an Euclidean space 𝑅6  is space of zero sectional curvature 𝐾(𝑈, 𝑉) = 0  for any arbitrary two-

dimensional direction. Therefore 

�̂�(𝑈, 𝑉) =
〈𝛻𝑈
ℎ𝑈, 𝛻𝑉

ℎ𝑉〉 − ‖𝛻𝑈
ℎ𝑉‖

2

‖𝑈 ∧ 𝑉‖2
. 

The simple calculation that 𝛻𝑈
ℎ𝑉 = 0, 〈𝛻𝑈

ℎ𝑈, 𝛻𝑉
ℎ𝑉〉 = 0. Thus, �̂�(𝑈, 𝑉) = 0 and the manifold (𝐿𝑝) is two-

dimensional manifold of zero curvature. 

3) Vector fields 𝐻1 = {𝑡1, 0,0,0, 𝑡5, 0} , 𝐻2 = {0, 𝑡2, 0,0,0, 𝑡6} , 𝐻3 = {−𝑡5, 0, 𝑡1
2 + 𝑡5

2, 0, 𝑡1, 0} , 𝐻4 =
{0,−𝑡6, 0, 𝑡2

2 + 𝑡6
2, 0, 𝑡2} are basic fields, as: 

[𝑈, 𝐻𝑖] = 0, [𝑉, 𝐻𝑖] = 0, 𝑖 = 1,4̅̅ ̅̅ . 
We calculate the second fundamental tensor with respect to fields 𝑆𝐻𝑖 , 𝑖 = 1,4

̅̅ ̅̅  corresponding second 

fundamental forms 𝑙𝐻𝑖, 𝑖 = 1,4
̅̅ ̅̅ : 

𝑆𝐻1𝑈 = ∇𝑈𝐻1 = {𝑡5, 0,0,0,−𝑡1, 0}, 𝑆𝐻2𝑉 = ∇𝑈𝐻2 = {0, 𝑡6, 0,0,0,−𝑡2}, 

respectively, 

𝑙𝐻1(𝑈, 𝑈) = 〈𝑈, 𝛻𝑈𝐻1〉 = 𝑡1
2 + 𝑡5

2, 𝑙𝐻2(𝑉, 𝑉) = 〈𝑉, 𝛻𝑉𝐻2〉 = 𝑡2
2 + 𝑡6

2, 

and others forms are equal zero. 

In this case eigen values 𝜆𝑖 corresponding matrixes 𝐴𝑖 are equal: 

𝜆1 =
〈𝑈, 𝛻𝑈𝐻1〉

𝑈2
=

𝑡1
2 + 𝑡5

2

1 + 𝑡1
2 + 𝑡5

2 , 𝜆2 =
〈𝑉, 𝛻𝑉𝐻2〉

𝑉2
=

𝑡2
2 + 𝑡6

2

1 + 𝑡2
2 + 𝑡6

2, 

respectively, others eigen values are equal zero. 

It is easy to check that 𝑈(𝜆1) = 0. Thus foliation 𝐹 is isoparametric. 

4) We will calculate sectional curvature of manifold (𝑅4, �̃�) in the two-dimensional direction, defined by 

vectors 𝑈𝑞
∗, 𝑉𝑞

∗ at the point 𝑝 ∈ 𝑅4. 

By the formula O'Neill (1996), for the Riemannian submersion 𝜋:𝑀 → 𝐵, sectional curvature 𝐾,𝐾∗ of 

manifolds 𝑀,𝐵 are connected by the relation 

𝐾(𝑋, 𝑌) = 𝐾∗(𝑋
∗, 𝑌∗) −

3

4

|[𝑋, 𝑌]𝑣|2

||𝑋 ∧ 𝑌||2
, 

where 𝑋, 𝑌 are horizontal vector fields of 𝑀, 𝑋 ∧ 𝑌 – bivector constructed on vectors 𝑋, 𝑌. 𝑋𝑣  vertical 

complement of vector 𝑋. 

As an Euclidean space 𝑅6  is space of zero sectional curvature 𝐾(𝑋, 𝑌) = 0  for any arbitrary two-

dimensional direction. Therefore, 

𝐾∗(𝑋
∗, 𝑌∗) =

3

4

|[𝑋, 𝑌]𝑣|2

||𝑋 ∧ 𝑌||2
. 

Thus, the manifold (𝑅4, �̃�) is four-dimensional manifold of nonnegative curvature. 

Now we can calculate sectional curvatures for the two dimensional directions defined by vector fields 

𝐻1
∗ = 𝑑𝜋(𝐻1), 𝐻2

∗ = 𝑑𝜋(𝐻2), 𝐻3
∗ = 𝑑𝜋(𝐻3), and 𝐻4

∗ = 𝑑𝜋(𝐻4) on (𝑅4, �̃�). By the fact that the mapping 

𝜋: 𝑅6 → 𝑅4 has maximum rank, vector fields 𝐻1
∗, 𝐻2

∗, 𝐻3
∗, and 𝐻4

∗ are linearly independent in each point of 
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manifold (𝑅4, �̃�). In this case we can calculate sectional curvatures. As 𝐾(𝐻𝑖, 𝐻𝑗) = 0, 𝑖, 𝑗 = 1,4̅̅ ̅̅ , 𝑖 ≠ 𝑗, 

we will receive following expression for the curvature 

𝐾∗(𝐻1
∗, 𝐻3

∗)(𝑞) =
3

(1 + 𝑡1
2 + 𝑡5

2)2
, 𝐾∗(𝐻2

∗, 𝐻4
∗)(𝑞) =

3

(1 + 𝑡2
2 + 𝑡6

2)2
, 

𝐾∗(𝐻1
∗, 𝐻2

∗)(𝑞) = 𝐾∗(𝐻1
∗, 𝐻4

∗)(𝑞) = 𝐾∗(𝐻2
∗, 𝐻3

∗)(𝑞) = 𝐾∗(𝐻3
∗, 𝐻4

∗)(𝑞) = 0. 
The theorem 2 is proved. 
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