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ABSTRACT 

In this paper, using a nucleon-nucleon exponential interaction potential   








rVrV 2exp0 , an 

expression for phase shift,
 

 fk ,  has been obtained omitting iso-spin effects. For Fermi momentum 0

1fm , 0.1
1fm , 0.2 

1fm … the values of phase shift,  fk , have been calculated. The values of the 

phase shift,
 

 fk , increases linearly with the increase in Fermi momentum, 
fk ,. The expression for the 

energy gap,  fk , and its variation with Fermi momentum, 
fk , is also calculated.   

  

Keywords: Phase Shift, Nuclear Matter, Energy Gap, Fermi Momentum 

 

INTRODUCTION 

Most of what we know about nuclear pairing comes from nuclei with a sizable neutron excess where the 

isospin 1T neutron-neutron (nn) and proton-proton (pp) pairing dominate (Dean and Hjorth-Jensen, 

2003). The nuclear force has been at the heart of nuclear physics ever since the field was born in 1932 

with the discovery of the neutron by Chadwick. In fact, during the first few decades of nuclear physics, 

the term nuclear force was often used as synonymous for nuclear physics as a whole. The interaction 

between two nucleons is basic for all of nuclear physics. The traditional goal of nuclear physics is to 

understand the properties of atomic nuclei in terms of the bare interaction between pairs of nucleons.  

The oldest theory of nuclear forces was presented by Yukawa based on the model in which the mesons 

mediate the NN (pp, pn, nn) interactions.  

The interaction between nucleons is characterized by the existence of a strongly repulsive core at short 

distance with a characteristic radius fm15.0  . The interaction obeys several fundamental symmetries 

such as translational, rotational, spatial-reflection, time-reversal invariance and exchange symmetry. 

General quantum numbers of a two-nucleon system is a natural starting point for a discussion of pairing 

found in nuclei (Dean and Hjorth-Jensen, 2003).  

It is not easy to precisely construct a nucleon-nucleon interaction. However, a description of the 

interaction in terms of various meson exchanges is at present the most quantitative representation in the 

energy regime of nuclear physics.  

It can be assumed that the meson exchange is an appropriate picture at low and intermediate energies and 

that at present it is sufficient to limit attention to the time-honoured configuration space version of the 

nucleon-nucleon interaction (Elgarøy and Hjorth-Jensen, 1997), including only central, l , spin-spin,
 

 . , tensor, 12S


r
,
 and spin-orbit, SL. ,  terms . When two nuclear particles or two nucleons collide 

with each other or scatter, there is what is called a scattering length, 𝑎0, the distance of the nearest 

approach. Once the particles are in the field of force of each other, they interact and scatter in any 

direction resulting in a phase shift or phase difference,  fk . Thus, phase shift,  fk , depends upon 

the interaction potential. We consider 1S0 pairing in infinite neutron matter and nuclear matter and show 

that in the lowest order approximation, where the pairing interaction is taken to be the bare nucleon-
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nucleon interaction in the 1S0 channel, the pairing interaction can be determined directly from the 1S0 

phase shifts.  

Many attempts have been made to derive an effective formula for calculating the phase shift in large 

nuclear systems using a nucleon-nucleon interaction in a given shell-model space and bare nucleon-

nucleon interaction using many-body perturbation theory (Dean and Hjorth-Jensen, 2003). While some 

theories appeared to work well for some nuclei, there are several indications that these formulae fail to 

produce results that can be compared with experimental values (Pudliner et al., 1997; Gregory et al., 

2014). A formula is derived that is used to find the values of the energy gap,  fk , and phase shift, 

 fk , also a formula has been derived which correlates phase shift,  fk , and energy gap using some 

known nucleon-nucleon interactions. 

Pairing in Nuclear Matter 
There has been renewed interest in the pairing problem in neutron matter and neutron-rich nuclei. The 

pairing gap is determined by the attractive part of the NN interaction. For the 1S0 channel in nuclear 

physics, depending upon the number of neutrons, when there is a nucleon-nucleon interaction such that 

their spins are aligned opposite, the angular momentum is zero. The channel for such neutron excess will 

be 1S0. There are two weak coupling limits. One is when the potential is weak and attractive for large 

inter-particle spacing and second when the potential becomes repulsive at r  0.6 fm. The potential has a 

value of some few Mev . In the strong coupling limit, the nucleon-nucleon potential is large and attractive; 

its value reaches a maximum of around 100 Mev  at r  1 fm.  

In the 1S0 channel the potential is attractive for momenta k ≤ 1.74
1fm  (or for interparticle distances r ≥ 

0.6 fm). In the weak coupling regime, where the interaction is weak, attractive and the coherence length is 

larger than the interparticle spacing a gas of fermions may undergo a superconducting (or superfluid) 

instability at low temperatures, and a gas of Cooper pairs is formed. This gas of Cooper pairs will be 

surrounded by unpaired fermions and the typical coherence length is large compared with the interparticle 

spacing, and the bound pairs overlap.  

In the strong-coupling limit, the formed bound pairs have only a small overlap, the coherence length is 

small, and the bound pairs can be treated as a gas of point bosons. One expects then the system to undergo 

a Bose-Einstein condensation into a single quantum state with total momentum 0k , called the zero-

momentum state (Nozieres and Schmitt-Rink, 1985). For the 1S0 channel in nuclear physics, we may 

actually expect to have two weak-coupling limits, namely when the potential is weak and attractive for 

large interparticle spacings and when the potential becomes repulsive at r ≈ 0.6 fm . In these regimes, the 

potential has values of the order of some few Mev .  

One may also loosely speak of a strong-coupling limit where the NN  potential is large and attractive. 

This takes place where the NN  potential reaches its maximum, with an absolute value of typically ∼ 100

Mev , at roughly ∼ fm1 . We note that fermion pairs in the 1S0 wave in neutron and nuclear matter will 

not undergo the above-mentioned Bose-Einstein condensation, since, even though the NN potential is 

large and attractive for certain Fermi momenta, the coherence length will always be larger than the 

interparticle spacing, as demonstrated by De Balsio et al., (1992).  

The inclusion of in-medium effects, such as screening terms, are expected to further reduce the pairing 

gap and thereby enhance further the coherence length. This does not imply that such a transition is not 

possible in nuclear matter. A recent analysis (Lombardo et al., 2001) of triplet 3S1 pairing in low-density 

symmetric and asymmetric nuclear matter indicates that such a transition is indeed possible. 

It is found that the neutron pairing gap 
nF  is strongly dependent on the Fermi momentum, or 

equivalently, the nuclear matter density. Energy gap,
nF , increases as the Fermi momentum (or density) 

goes down, reaches a maximum at
18.0  fmk

nF in symmetric nuclear matter or 
19.0  fmk

nF in pure 
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neutron matter, and then rapidly drops to zero. A systematical enhancement of about 0.3 Mev  for 
nF  

around 
18.0  fmk

nF is revealed in pure neutron matter compared with those in symmetric nuclear 

matter for all of the adopted pairing interactions (Bao and Wei, 2013). 

The energy gap is to a remarkable extent determined by the available
0

1S  phase shifts. Thus, the 

quantitative features of 
0

1S  pairing in neutron matter can be obtained directly from the
0

1S  phase shifts. 

This happens because the NN  interaction is very nearly rank-one separable in this channel due to the 

presence of a bound state at zero energy, even for densities as high as
14.1  fmkF . This explains why 

all bare NN  interactions give nearly identical results for the
0

1S  energy gap in lowest-order BCS  

calculations. 

The results of different groups are in close agreement on the
0

1S  energy gap values and on its density 

dependence, which shows a peak value of about 3 Mev  at a Fermi momentum close to 
18.0  fmkF  

(Elgarøy and Hjorth-Jensen, 1997). All these calculations adopt the bare NN interaction as the pairing 

force, and it has been pointed out that the screening by the medium of the interaction could strongly 

reduce the pairing strength in this channel (Chen et al., 2008). The issue of the many-body calculation of 

the pairing effective interaction is a complex one and still far from a satisfactory solution. 

The calculation of the
0

1S  gap in symmetric nuclear matter is closely related to the one for neutron matter. 

Even with modern charge-dependent interactions, the resulting pairing gaps for this partial wave are fairly 

similar (Elgarøy and Hjorth-Jensen, 1997). 

The size of the neutron-proton (np) 1

3

1

3 DS  energy gap in symmetric or asymmetric nuclear matter has, 

however, been a much debated issue since the first calculations of this quantity appeared. While solutions 

of the BCS equations with bare nucleon-nucleon NN forces give a large energy gap of several MeVs  at 

the saturation density 
136.1  fmkF  (Akmal  et al., 1998; Takatsuka and Tamagaki, 1997; Vonderfecht 

et al., 1993), there is little empirical evidence from finite nuclei for such strong np pairing correlations, 

except possibly for isospin T = 0 and N = Z.  

Since the pairing correlations are largest for small densities, i.e., at the surface of the nucleus, this result 

agrees with the usual observation that pairing in nuclei is a surface phenomenon. Moreover, the 

agreement between the results obtained with bare relativistic forces and those obtained with the Gogny 

force for the pairing properties of the symmetric nuclear matter is a particularly interesting outcome as in 

that using this density dependence of the gap parameter in semi classical calculations the average pairing 

properties of finite nuclei can be reproduced rather well (Serra et al., 2001).  

Following the discovery of neutron stars, (Hoffberg et al., 1970) calculated gaps for neutron matter within 

the BCS theory using a separable nucleon-nucleon interaction that had been fitted to two-nucleon 

scattering data. Their calculations predicted a pairing gap for neutrons in the 
0

1S  state that first rose with 

increasing density, reached a maximum of roughly 3 MeV  at a density of about
10

sn
, where 

316.0  fmns
 is the saturation density of nuclear matter with equal numbers of neutrons and protons, a 

density typical of the interiors of heavy nuclei. With further increase in density, the gap dropped and 

vanished at a density somewhat below sn . 

The qualitative behavior of the gaps may be understood in terms of the measured phase shifts for nucleon-

nucleon interactions. A positive phase shift corresponds to an attractive interaction between neutrons, and 

therefore at low k, which corresponds to low Fermi momentum and low density, the most attractive 

channel is 
0

1S , (Dean and Hjorth-Jensen, 2003; Gezerlis et al., 2014).  
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The main objective of this paper is to establish the correlation between the Phase Shift,  fk , and Fermi 

momentum, 
fk ,using the exponential potential in Nuclear Systems.  

Theoretical Formulations 

At a low density limit a general two-body Hamiltonian for an assembly in the ground state can be written 

as (Dean and Hjorth-Jensen, 2003), 

   aaaaVaaHHH 


  21                                      [1]   

Where, 


1H represents the kinetic energy of the system, 


2H  represents the potential energy of the system, 

a + is the fermion creation operator,  a  is the fermion annihilation operator, V  represents the coupled 

matrix elements of the two-body interaction  rV . The sums run over all possible single-particle quantum 

numbers. The pairing gap is determined by the attractive part of the nucleon-nucleon interaction.  

Within the meson-exchange models, we may have exchange of π, ρ, ω, σ, η and δ mesons. As an 

example, for a potential due to the exchange of a  -meson, the co-efficient C = TC  = (g2
NN π/4 ) 

(m3
π/12M2); and 

0

cC =
1

cC   = SLC = 0 with experimental value for g2
NN π ≈ 13-14, mπ is the mass of the π-

meson, M is the mass of the nucleon (Machleidt et al., 1996; Stoks et al., 1995). 

The complete interaction is written as (Dean and Hjorth-Jensen, 2003),    

 
    rm

e
SL

rmrm
CrS

rmrm
CCCCrV

rm

SLTcc






















































 .

1133
1.

212221

10

   

          [2] 

Where, 𝑚𝛼  is the mass of the relevant meson and 12S  is due to the tensor force term; such that 

 


 rrrrS .... 21

2

2112   

Where,  is the standard operator notation for spin - 
𝟏

𝟐
  particles. 

From discussion of the potential due to the exchange of a  –meson, the co-efficient C = SLC  = (g2
NN 

π/4π) (m3
π/12M2); 

0

cC =
1

cC = SLC = 0 with experimental value for g2
NN π ≈ 13-14, the interaction potential, 

 rV   therefore, reduces to (Dean and Hjorth-Jensen, 2003), 

  
  rm

e
rS

rmrm
CrV

rm

T

























 122

33
1                               [3] 

Other potentials that may be used (Blatt and Weisskoff, 1952) are, 

i.Square well potential,   ,0VrV   

ii.Gaussian well potential,   






 2

2

0 exp


rVrV           

iii.Yukawa well potential,  




























r

rV
rV

exp0

 

iv.Exponential well potential,   








rVrV 2exp0  
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Where,  rV  is the interaction potential, r is the inter-particle distance,   is the range of nucleon-

nucleon force and 0V  is the potential well depth. 

Calculations are done to correlate the interaction potential,  rV , to the phase shift,  k . 

The exponential potential   








rVrV 2exp0  used (Blatt and Weisskoff, 1952) in our derivation of 

phase shift and energy gap equations, since it is simple to integrate and does not require complex 

integration methods like the Gaussian well potential and Yukawa well potential and also it has not been 

explored fully by others. 

The Born-approximation expression for phase shifts,  fk , for scattering from a spherical potential,

 rV , in 3-D is given by, (Gezerlis et al., 2014) 

      drrrkjrV
k

k f

f

f

2

0

2

2

2




 



                                                               [4] 

Equation [4] is used in calculating the phase shift,  fk , by using the exponential potential given as 

  








rVrV 2exp0  and using Bessel Function in the form    

 2
2

2

0

sin

rk

rk
rkj

f

f
f   for ℓ=0, 

ground state, where 1rk f
.                                                                                      [5]  

Using derived equations and the values of the constants available, data was then generated and tabulated. 

Graphs have been drawn to show how the phase shift  fk , varies with the Fermi momentum, 
fk . This 

potential is substituted in the Born-approximation phase shifts,  fk , for scattering from a spherical 

potential,  rV , in 3-D, and  to find the values of phase shifts. 

The pairing gap for small values of 
0ak f

is (Dean and Hjorth-Jensen, 2003; Gorkov and Melik-

Barkhudarov, 1961), 

 















0
2 2

exp
8

ake
k

f

f
                                                                          [6] 

Where, 0a  is the scattering length in the 1S0 channel ( 0a = -23.7 fm),  is a constant 1 , 718.2e . 

Here, 0a  is related to the interaction potential between a pair of nucleons. However, at saturation density

0 = 0.17 fm-3, 
fk =1.36 fm-1.  

For low energy scattering, especially in nuclear physics, the phase shift,  fk , due to scattering is given 

by the relation (Gezerlis et al., 2014; Elgarøy & Hjorth-Jensen, 1997). 

  2

0

0 2

11
cot fff kr

a
kk                                                                                [7] 

Here, 0r is the effective range of the nuclear force which roughly corresponds to the size of the potential 

and   fk  is the S-wave scattering phase-shift. 

At ground state  =0 therefore Equation [4] becomes,  

      drrrkjrV
k

k f

f

f

2

0

2

020

2








                                                                      [8] 
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Here,  rkj f0  is the spherical Bessel function of zeroth order i.e. ℓ= 0 such that, 

 
 

 2
2

2

0

sin

rk

rk
rkj

f

f

f                                                                                                    [9] 

It is valid to represent the interaction energy of a particle with momentum
fi kk  , with all the particles 

within the Fermi surface. The values for ik  could be 0.1fm-1, 0.2fm-1, 0.3fm-1… (Khanna & Barhai, 1975) 

and therefore for 1rk f
, hence    22sin rkrk ff   therefore equation [16] reduces to, 

  12

0 rkj f                                                                                                            [10]  

Using the exponential potential, Equation [10] and substituting them in Equation [4], we have, 

                                                                           [11]  

 

 

or 

 
2

3

0

0
2




Vk
k

f

f                                                                                                [12] 

Now for exponential potential the values of, s , is  (Blatt and Weisskoff, 1952) 

2

2

017291.0


MV
s                                                                                             [13] 

But 1s for the bound state of the nuclear matter; and hence 0V  is given by,    

2

2

0 7834.5
M

V


                                                                                               [14] 

Substituting Equation [14] in Equation [12] we have, 

 
M

k
k

f

f


 7834.20                                                                                        [15] 

Now in the exponential potential, the range of the potential well, 0V , is, 𝑏, and, 𝛽, are related by the 

relation, 

𝑏 = 1.7706𝛽 = 2.15𝑓𝑚                                                                                              [16] 

Therefore, fm2143.1 , for 1S0 scattering, and the reduced mass,
  , of the two interacting nucleons is 

given by 

np

np

mm

mm




                                                                                                          [17] 

Where, pm  is the proton mass equal to Mev27.938 , and nm  is the neutron mass equal to Mev57.939 . 

Substituting the values of the masses in Equation [17] we have the reduced mass Mev46.469 .  The 

average mass M of the proton and neutron is given by the equation, 

2

np mm
M


                                                                                                         [18] 

Substituting for the values of the masses MevM 92.938 , then Equation [15] becomes 

  ff kk 6899.10                                                                                                    [19] 

  drre
Vk

k
r

f

f 
 


0

2
2

2

0

0

2



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We will calculate the values of phase shift,  fk0 , for different values of 
fk ranging from 0.1

1fm , 0.2

1fm ,0.3
1fm …1.6

1fm , and plot a graph of phase shift,  fk0 , against Fermi momentum,
fk ,.  

For scattering length in the 1S0 channel, fma 7.230  , 718.2e and 1  Equation [6]  for energy 

gap,  fk , becomes,  

 












 


f

f
k

k
0663.0

exp.0827.1                                                                            [20] 

Equation [20] will give the values of energy gap,  fk , for different values of the  Fermi momentum,
fk

.  

RESULTS AND DISCUSSION 

Equation [19] is used to compute the values of phase shift,  fk0 , against changes in the Fermi 

momentum,
fk , and this variation, is studied using MathCAD software and data tabulated as shown in 

table 1. 

 

Table 1: Values of Fermi Momentum against the Values of Phase Shift  

Fermi Momentum,
fk , in 

1fm  Phase Shift,  fk0 , in Degrees 

0 0 

0.1 0.169 

0.2 0.338 

0.3 0.507 

0.4 0.676 

0.5 0.845 

0.6 1.014 

0.7 1.183 

0.8 1.352 

0.9 1.521 

1.0 1.690 

1.1 1.859 

1.2 2.028 

1.3 2.197 

1.4 2.366 

1.5 2.535 

1.6 2.704 
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The following graph is obtained from table 1. 
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Figure 1: A Graph of Phase Shift,  fk0 , against Fermi Momentum,

fk  

When the Fermi momentum,
fk , of the interacting nucleons is zero the value of phase shift,  fk0 ,  is 

equal to zero in the ground state as seen from figure 1. This shows that an increase in Fermi momentum,

fk , leads to an increase in phase shift,  fk0 .  

Equation [19] is used to compute the values of energy gap,  fk , against changes in the Fermi 

momentum,
fk , and this variation is studied using MathCAD software and the data tabulated as shown in 

table 2. 

Table 2: Values of Fermi Momentum and against the Values of Energy Gap 

Fermi Momentum,
fk , in 

1fm  Energy Gap,  fk , in Mev  

0.1 0.558 

0.2 0.777 

0.3 0.868 

0.4 0.917 

0.5 0.948 

0.6 0.969 

0.7 0.985 

0.8 0.997 

0.9 1.006 

1.0 1.013 

1.1 1.019 

1.2 1.025 

1.3 1.029 

1.4 1.033 

1.5 1.036 

1.6 1.039 
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The following graph is obtained from table 2. 
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Figure 2: A Graph of Energy Gap,  fk , against Fermi Momentum,
fk  

 

The energy gap,  fk , increases  steadily and faster for low Fermi momentum,
fk , upto around 0.4

1fm
 and it is more or less constant with a value Mev0.1 . In literature the values of the energy gap are 

...8.0,6..0,4.0,2.0 Mev for 0.2, 0.3, 0.4
1fm respectively which are in agreement.  

Conclusion 

When two nuclear particles or two nucleons collide with each other or scatter, there is what is called a 

scattering length, 𝑎0, the distance of the nearest approach. Once the particles are in the field of force of 

each other, they interact and scatter in any direction resulting in a phase shift or phase difference,  fk , 

thus phase shift,  fk , depends upon the interaction potential,  rV ,. Considering 1S0 pairing in infinite 

neutron matter and nuclear matter and the bare nucleon-nucleon exponential interaction in the 1S0 

channel, our calculations shows that the phase shift,
 

 fk , increases linearly with Fermi momentum,

fk ,. The energy gap,  fk , increases  steadily and faster for low Fermi momentum, fk , and become 

constant at higher values. It will be interesting to see if other potentials are used, how phase shift,
 

 fk , 

and energy gap,  fk , varies with Fermi momentum,
fk . 
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