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ABSTRACT 

In this paper, we have considered an incompressible viscous fluid in a three-dimensional axi-symmetric 

coordinate system. The governing equations are transformed to ordinary differential equations by using 

properly introduced similarity variable. Furthermore, pressure variations along the boundary layer 

thickness are taken into account. The energy equation is solved by Numerical technique. The fluid 

temperature, the velocity components and the solidification rate are presented for different values of non-

dimensional governing parameters.  

 

Keywords: Axisymmetric Solidification, Viscous Flow, Exact Solution, Stagnation Point, Unsteady Flow 

 

INTRODUCTION 

The manufacture of almost every man-made material involves the solidification process at some stage of 

the manufacturing process. Some of the important processes that involve solidification are foundry, 

welding, casting of ingots and continuous casting. Continuous casting is of such importance because it is 

a very economic method of forming a metallic component. The composition variation within a solidified 

product is known as segregation. Segregation in an alloy is a result of solute rejection at the solidification 

front followed by its redistribution by diffusion and mass flow. Depending on the extension of 

composition variation, this defect is classified as micro segregation, relative to grain scale, or macro 

segregation, relative to the product scale. Macro segregation affects the mechanical (ductility, strength, 

etc) and chemical properties (corrosion resistance) of materials in the product extension. It also affects 

precipitation of weak second phases, that was not expected if the initial composition was achieved, and 

porosity may be generated. Hence, Solidification is a two-phase phenomenon that is used in different 

natural processes and industrial applications. Glass, metal, plastic and oil industries, providing food and 

other corresponding industries needs a good insight of solidification behavior as the nature of solid 

growth. Studies of phase change in stagnant media for better understanding of convection effect upon the 

interface behavior and solidification properties are needed by industrial demand such as the desire for 

more homogenous semi-conductor crystals, in nuclear industry, as well as the better understanding of 

natural ice formation. The classic problem stagnant fluid solidifying on the cold plate is solved by Stefan 

(Stefan, 1891). One dimensional heat fluxes method for phase change problem is presented (Goodrich, 

1978). These methods are accompanied simplified assumptions such as one dimensionality solid-liquid 

interface. An experimental study for natural convection in interface within heat flux controlling due to 

solidification is provided (Sparrow et al., 1983). Also, a numerical method for solidifying in natural 

convection is used (Lacroix, 1989) and three dimensional problems for natural convection 

accompaniment phase change in rectangular channel is solved by Hadji and Schell (1990) in fluid 

variable properties state with temperature. Solidification of a fluid layer confined between two isolated 

plates is investigated by Hanumanth (1990). Another way for calculating of heat flux depended to on time 

in natural convection is presented by Oldenburg and Spera (1992). A combined model for phase change 

upon various states of pure substances, melting fluid problem due to spreading and solidifying on the flat 

plate and numerical modeling of forming and solidifying of a droplet on a cold plate is investigated by 

Trapaga et al., (1992); Watanabe et al., (1992); Marchi et al., (1993). Evolution due to impact on 

substrate plate and solidifying of a droplet (Brattkus and Davis, 1988) is presented. But in concentrating 

upon stagnation flow, solidification of an inviscid fluid at interface and effect of its phenomena on 

morphological instability is investigated by Rangel and Bian (1994). Stefan problem for inviscid 
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stagnation flow by two methods and solidifying of super-cooled liquid stagnation inviscid flow is 

considered by Lambert and Rangel (2003); Yoo (2000), respectively. Recently, Shokrgozar and Rahimi 

(2012) studied the two-dimensional solidification of a viscous stagnation flow. In this paper, the exact 

solution of the momentum equations (Shokrgozar and Rahimi, 2013) is used for numerical solution of the 

energy equation. Imagine the fluid from far field moves perpendicularly approaches to a cold plate and 

after impinging on the plate the solid phase will formed on it gradually (Figure 1). In this study, the 

solidification process of a viscous stagnation flow is investigated in a three-dimensional axi-symmetric 

coordinate where a new method is implemented for validation of the numerical results. In this method, the 

exact solution of a heat profile is used as a quasi-steady solution for the problem. A parametric study is 

performed to examine influences of governing dimensionless parameters on the results as well. An exact 

solution is performed for solving momentum equations (Shokrgozar et al., 2016) while the energy 

equation in liquid phase, solid-liquid interface and solid phase is solved by using finite difference method. 

The exact solution of the energy equation is used for validation of the numerical solution of energy 

equation, too. Forth order Runge-Kutta algorithm is used for solving momentum and energy equations. In 

addition, Numerical solution is needed to finding unsteady temperature profiles at each time step. 

Formulation and Solution of the Problem 

We consider unsteady viscous incompressible laminar stagnation flow with strain a( t )  perpendicularly 

approaches to a plate, along z-direction, initially positioned at 0z   when 0t  . For all times of 

consideration, the fluid is solidified with variable solidification velocity and acceleration, S( t ) and S( t ) , 

respectively, that of an imaginary plate at solid-liquid interface is moved towards fluid where )(tS  is the 

plate distance, at time t, from the plate origin at 0z . 

 

 
Figure 1: Axi-symmetric Stagnation Flow (Coordinate System) 

 

Figure 1 represents three-dimensional axi-symmetric coordinates with corresponding ( u,w ) velocities 

related to ( r ,z ) . The imaginary plate is considered as a flat one because the only mechanism of heat 

transfer in the interface is conduction with the same temperature difference so the substrate remains flat. 

The inviscid flow can be assumed as potential flow within displacement thickness in boundary layer 

region. Where, 0a  is the strain rate at far field. For a Newtonian fluid with constant density and viscosity, 

unsteady three-dimensional axi-symmetric Navier-Stokes equations governing the flow and heat transfer 

are given as: 
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In liquid phase: Energy (dissipation and radiation heat transfer are neglected without internal source): 
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The conductivity and heat capacity coefficients are constant (k and c respectively) also dTcdu   is 

assumed where p ,  ,  , and   are the fluid  pressure, density, kinematic viscosity, and thermal 

diffusivity, respectively. The dissipation terms are neglected in the energy equation because of the flow 

velocities being too small. Also, subscripts s  and l  denote solid and liquid, respectively.  

According to Shokrgozar et al., (2016), viscous parts of the velocity components are as: 

u a( t ) r f ( )          (7) 

2w a a( t ) f ( )           (8) 

anda , z S( t )             (9)   

In which the terms involving )(f  in (7), (8) comprise the axi-symmetric similarity form for unsteady 

stagnation flow, and prime denotes differentiation with respect to . Transformations (7)-(9) satisfy (1) 

automatically and their insertion into (2)-(3) yields an ordinary differential equation in terms of )(f  

along with an expression for the pressure, as follow: 
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Where dot denotes differentiation with respect to t , Also, andP,S ,S r  are dimensionless forms of

andP,S ,S r , respectively.  

The boundary conditions for the differential equation (10) are: 

0 0 0: f , f            (15) 

1: f            (16) 

It is worth mentioning that relation (11) which represents pressure is obtained by integrating Equation (3) 

in z-direction and by use of the potential flow solution as boundary conditions. 

To transform the energy equation into a non-dimensional form for the case of defined wall temperature, 

we introduce: 

w

T( ) T

T T
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Making use of transformations (7) - (9), this equation may be written as: 

 2 0" S( ) f Pr. '            (18)  

With boundary conditions as: 

1 at 0            (19) 

0 at,            (20) 

Where,   is dimensionless temperature, the subscript w  and   refer to the conditions at the wall and in 

the free stream, respectively, and prime indicates differentiation with respect to  .   

Using the non-dimensional quantities for temperature as , time as , distance from r axis as r~ , and 

distance from z axis as z~ , equations (4)-(6) become: 

For liquid phase: 
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For solid phase: 
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And for their intersection:  
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At first, the momentum equation of liquid (10) is solved numerically using a shooting method based on 

Runge-Kutta algorithm. Resulted velocities are used in energy equation (21) in liquid region in order to 

convert this nonlinear equation to a linear one. Then, this linear equation is dischretized by using Power 

Law scheme so for small )1( PePe  and Large )10( PePe , scheme is central and upwind, respectively. 

For 101  Pe , scheme is composite of these two. For solving the algebraic system of equations, TDMA
i
 

within ADI
ii
 method is used. In addition, the resulted velocities of momentum solution are used to obtain 

the exact solution of energy equation (Shokrgozar et al., 2016). However, this exact solution is not used 

to capture the fluid temperature in the computational domain at each time step. In the next sections, the 

reason of this phenomenon will be discussed. 
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RESULTS AND DISCUSSION 

In this section, in order to validate the energy equation numerical results of our study, the obtained results 

are compared with exact solution and previous studies. Comparison of results between this study and 

exact solution is new and creative method. For comparisons, Shokrgozar et al., (2013) study results are 

the most complete study and best selection. This reference was selected to validate the achieved results. 

For simplification and more excellent comparisons, parameter introducing in this study is the same as 

(Shokrgozar et al., 2013) study. The results of these two studies are presented together in figure 3 for  

 1 1 1 1 1i r rPr , St , , , k      .  

 

 
 

Figure 2a: Final Solid Thickness, Low Pr 

Number 

Figure 2b: Final Solid Thickness, High Pr 

Number 

 

According to this figure, there is a difference in ultimate solid thickness between two-dimensional and 

three-dimensional cases, as expected; however, the trend of evolution is the same in both graphs. In 

addition, the exact solution of energy equation can be used for validation of the numerical solution of the 

same equation.  

Figure 8 shows the comparison between exact and numerical solutions of temperatures profiles. Indeed, 

the exact solution is a quasi steady solution of the energy equation. This means the numerical solution is 

the same as the exact solution if there is enough time for evolution while other conditions are maintained 

constant.  

In this figure, two profiles are matched completely, at first and last times. At the beginning, the time of 

evolutions is very small and differences between these two profiles are negligible (two profiles are 

matched completely). At the end, there is enough time to complete the evolution of temperature profile 

while variations of other parameters are not considerable as they are very close to reach their steady 

conditions.  

In the middle times, there is a noticeable difference between two profiles expectedly; however, the trend 

of the profiles evolution at both figures is the same.  

Figure 4 represents the temperature profiles of liquid and solid phases for different times due to 

advancement of solidifying front. The slope of each chart is )(tg
 
in the first node of liquid or solid 

phase. The figure reveals that solidification is stopped just as values of these two slopes become equal 

(note that 1r ).  

Figure 5 presents the exact solution of thermal profile for different times and different solidification front 

velocity. Next, Figures 6 and 7 provide the velocity profiles in r  and z  directions for different times and 
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solid thicknesses. As it is shown, when the solidification velocity is very high, that is just for initial 

moments, the slope of velocity profile in boundary layer is very steep and the velocity approaches toward 

potential flow very fast and so the thickness of viscous boundary layer is very thin. By decreasing 

solidification velocity, Hiemenz flow is appeared more and more.  

Also, a comparison is made in Figure 8 between exact and numerical solutions of heat transfer profiles at 

different times. 

 

 
 

Figure 3: Comparison of Two-Dimensional 

(Shokrgozar et al., 2016) and Three-

Dimensional (Present Study) Results for 

1 1 1 1 1r r IPr ,St ,K , ,     
 

 

Figure 4: Numerical Solution, Thermal Liquid 

and Solid Profiles for 

1 1 1 1 1r r IPr ,St ,K , ,       

  
Figure 5: Exact Solution, Thermal Profile for 

1 1 1 1 1r r IPr ,St ,K , ,       

Figure 6: Velocity Profile in x  Direction for 

1 1 1 1 1r r IPr ,St ,K , ,       
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Figure 7: Velocity Profile in z  Direction for 

1 1 1 1 1r r IPr ,St ,K , ,       

Figure 8: Comparison between Temperatures 

Profile of Exact Solution and                              

Numerical Solution 

1 1 1 1 1r r IPr ,St ,K , ,       

 

The parametric studies are applied for different values of I r rPr,St, ,K ,  while study is concentrated on 

the advancement of solidifying front versus time that is the most important phenomenon in solidification. 

In Figure 9, a comparison is made between the solidification process of this study and Ref. (Shokrgozar et 

al., 2013) for 1Pr , 10Pr and 1.0Pr , respectively.  

The trend is the same in the two graphs so the solid upper limit decreases as Pr number increases 

relatively to basic 1Pr  graph. Mathematical analysis can confirm the validity of the numerical solution. 

Solidification will stop when the steady conduction heat transfer establishes in intersection. One-

dimensional steady conduction heat transfer at intersection reads: 
2 1
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 that the just upper and lower nodes temperature in fluid and solid regions are introduced by liquid  and 

solid  , respectively. In this equation, dimensionless time (  ) tends to infinity as   0 rsolidliquid 

and solidification is stopped consequently while 1r is assumed for simplification. It can be referred to 

(Shokrgozar et al., 2013) for more details.  

Figures 2A and 2B determine the ultimate solid thickness that is equal to )(tg (where )(tg  is slope of 

temperature profile at first node). It is evident that when the thickness of the temperature boundary layer 

increases, the solid upper limit increases and this increasing is due to Pr number decrease and vice versa. 

Moreover, it was capture that by taking into account solely the effect of St  number does not change the 

solid upper limit as St  number does not appear in (24) but St number variations changes the solidification 

time.  

However, a complete match of the heat transfer profiles obtained by two methods of exact solution and 

numerical solution at the beginning and ending times can be considered as the best reason for validation 

of the numerical results.  
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Figure 9: Comparison between Two-

Dimensional and Three-Dimensional; Effect of 

Pr  Number upon Solidification Front for 

1 1 1 1r r ISt ,K , ,      

Figure 10: Effect of rk  or r  Variations upon 

Solidification Front for 1 1 1IPr ,St ,    

  

Figure 11: Effect of I Variations upon 

Solidification Front for 

1 1 1 1r rPr ,St ,K ,     

Figure 12: Effect of Pr  Number upon 

Solidification Front for 

1 1 1 1r r ISt ,K , ,      

 

Equation (24) shows that decreasing of rk or r  by half, increases solid upper limit two times exactly of 

that )(tg  increases two times (figure 2). Also, Figure 10 shows the effect of rk and r variations upon 

solidification front thickness. In this case, decreasing of
 rk and r

 
by half, increases thickness of solid 

two times exactly. Figure 11 represents results for 5.0I  and 2I  ( 1,1,1,1  rrkStPr  ). The variations 

of I  have interesting results. When I  tends to zero, ultimate frozen thickness tends to infinity and this 

case requires another study separately. Figure 12 represents effect of Pr  number variations in front 

solidification more clearly. As previously mentioned, this figure shows increasing Pr  number decreases 

solid upper limit and vice versa. Figure 13 represents St  number has no effect on the ultimate thickness in 

front solidification as former discussion. However, the St  number has only effect upon the solidifying 

time. 

-3 -2 -1 0 1 2
0

1

2

3

4

5

6

7

log ( )
10

S


2D & 3D (All Pr)

2D, Pr=0.1
3D, Pr=0.1
2D, Pr=1.0
3D, Pr=1.0
2D, Pr=10.
3D, Pr=10.

-3 -2 -1 0 1 2

0.4

0.8

1.2

1.6

2

2.4

log ( )
10

S


Kr or r = 0.5
Kr or r = 1
Kr or r = 2





-3 -2 -1 0 1 2

0.5

1

1.5

2

2.5

3

log ( )
10

S


i = 2.0
i = 1.0
i = 0.5





-3 -2 -1 0 1 2

0.5

1

1.5

2

2.5

3

log ( )
10

S


Pr = 0.1
Pr = 1
Pr = 10.



International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) 

An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 

2016 Vol. 6 (4) October-December, pp. 63-72/Sulochana 

Research Article 

Centre for Info Bio Technology (CIBTech)  71 

 

 
Figure 13: Effect of St  Number upon Solidification Front for 1 1 1 1r rPr ,St ,K ,     

 

Conclusion 

We have considered an incompressible viscous fluid in a three-dimensional axi-symmetric coordinate 

system. The governing equations are transformed to ordinary differential equations by using properly 

introduced similarity variable. The conclusions are made as the following. 

1. The results show steady temperature boundary layer or, by more exact words, start of steady 

temperature profile slope determines the ultimate solidification thickness.  

2. The ratio of liquid to solid temperature diffusivity and, more importantly, Pr number has effect 

upon this temperature boundary layer thickness.  

3. Very small effect of convection terms at near of interface leads to flatting solidification front but 

these terms are very important as approaching to the edge of boundary layer.  

4. The final solid thickness in a three-dimensional stagnation flow is about 75.0  times of that of a 

two-dimensional case.  

 

REFERENCES 

Brattkus K and Davis SH (1988). Flow induced morphological instabilities: stagnation-point flows. 

Journal of Crystal Growth 89 423-427. 

Goodrich LE (1978). Efficient numerical technique for one dimensional thermal problems with phase 

change. International Journal of Heat Mass Transfer 21 615-621. 

Hadji L and Schell M (1990). Interfacial pattern formation in the presence of solidification and thermal 

convection. Physical Review A 41 863-873. 

Hanumanth GS (1990). Solidification in the presence of natural convection. International 

Communications in Heat and Mass Transfer 17 283-292. 

Lacroix M (1989). Computation of heat transfer during melting of a pure substance from an isothermal 

wall. Numer. Heat Transfer B 15 191-210. 

Lambert RH and Rangel RH (2003). Solidification of a super cooled liquid in stagnation-point flow. 

International Journal of Heat Mass Transfer 46 4013-4021. 

-3 -2 -1 0 1 2

0.2

0.4

0.6

0.8

1

1.2

1.4

log ( )
10

S


Stefan = 0.1
Stefan = 1.0
Stefan = 10



International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) 

An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 

2016 Vol. 6 (4) October-December, pp. 63-72/Sulochana 

Research Article 

Centre for Info Bio Technology (CIBTech)  72 

 

Marchi CS, Liu H, Lavernia EJ and Rangel RH (1993). Numerical analysis of the deformation and 

solidification of a sigle droplet impinging on to a flat substrate. Journal of Materials Science 28 3313-

3321. 

Oldenburg CM and Spera FJ (1992). Hybrid model for solidification and convection. Numerical Heat 

Transfer B 21 217-229. 

Rangel RH and Bian X (1994). The inviscid stagnation-flow solidification problem. International 

Journal of Heat Mass Transfer 39(8) 1591-1602. 

Shokrgozar A and Rahimi AB (2012). Investigation of Two-dimensional unsteady stagnation point-

flow and heat transfer impinging on an accelerated flat plate. Journal of Heat Transfer 134 064501-5. 

Shokrgozar A and Rahimi AB (2013). Solidification of Two-Dimensional viscous, incompressible 

Stagnation flow. International Journal of Heat Transfer 135 072301-8. 

Shokrgozar A, Rahimi AB and Mozayyeni H (2016). Investigation of three-dimensional axisymmetric 

unsteady stagnation point-flow and heat transfer impinging on an accelerated flat plate  . Journal of 

Applied Fluid Mechanics 9 451-461. 

Sparrow EM, Ramsey JW and Harris S (1983). The transition from natural convection controlled 

freezing to conduction controlled freezing. Journal of Heat Transfer 103 7-13. 

Stefan J (1891). Uber die theorie der eisbildung, insbesondere uber die eisbildung in polarmaere. 

Annalen der Physik und Chemie 42 269-286. 

Trapaga G, Matthys EF, Valecia JJ and Szekely J (1992). Fluid Flow, heat transfer and solidification 

of molten metal droplets impinging on substrates: comparison of numerical and experimental results. 

Metallurgical Transactions B 23B 701-718. 

Watanabe T, Kuribayashi I, Honda T and Kanzawa A (1992). Deformation and solidification of a 

droplet on a cold substrate. Chemical Engineering Science 47(12) 3059-3065. 

Yoo JS (2000). Effect of viscous plane stagnation flow on the freezing of fluid. International Journal of 

Heat and Fluid Flow 21 735-739. 

                                                 
 

 


