# IN-SILICO DESIGNING AND SCREENING OF NOVEL PYRIDOINDOLE DERIVATIVES AS CREATIN KINASE INHIBITORS: A QSAR MODELING AND DOCKING APPROACH

## Rudra Kumar Maheshwari, \*Ajeet and Arvind Kumar

Department of Pharmaceutical Chemistry and Drug Design, S. D. College of Pharmacy and Vocational Studies, Muzaffarnagar 251001, India
\*Author for Correspondence

## **ABSTRACT**

Pyridoindole derivatives have been used to correlate the half maximal inhibiting concentration (-log IC<sub>50</sub>) with the partition co-efficient, molecular weight, McGowan volume and topological polar surface area for developing the quantitative structure activity relationship (QSAR) model as primary screening for novel designed pridoindole derivatives. We have used multiple linear regression (MLR) for developing QSAR model. For the validation of the developed QSAR model, statistical analysis such as cross validation test, standard deviation, quality factor, fischers test, root mean square deviation (RMSD), variance; and internal validation such as Y-randomization test have been performed and all the tests validated this QSAR model with fraction of variance  $r^2 = 0.8202$  and LOO-CV variance  $q^2 = 0.8222$ . Eight novel pyridoindole analogues have been designed and their half maximal inhibiting concentration (-log IC<sub>50</sub>) has been calculated with the developed OSAR model. It was found that the calculated half maximal inhibiting concentration ( $-\log IC_{50}$ ) of these analogues were within the same range as of the training set. Further, all the screened derivatives gone through a second screening via docking analysis (TARGET-Creatin kinase, PDB id 3DRB) which shows better docking score as compared to the stobadin, a creatin kinase inhibitor. In this 2 tier screening, 3 novel designed molecules (RA5, RA6, and RA7) out of 8 have passed both the screening levels. The results suggested that the screened novel pyridoindole analogues could be developed as good creatin kinase inhibitors.

Keywords: Pyridoindole Analogues, QSAR, MLR, Docking, Creatin Kinase Inhibitors

## INTRODUCTION

Relative preservation of neuronal structure or function is commonly known as neuroprotection (Casson, 2012). It aims to prevent and slow down the disease progression and some secondary injuries by slowing the loss of neurons (Seidl, 2011). Despite non-similarity in symptoms of CNS disorder, the neurodegenerative mechanisms are same, oxidative stress is one of them. Creatin kinase is an enzyme expressed by various tissues and cell types. It catalyses the conversion of creatine and consumes adenosine triphosphate to create phosphocreatine and adenosine diphosphate (Dunnett, 1999). Based on the various scientific researches it is clear that pyridoindole stobadine may protect nervous structures against oxidative stress (Stolc, 1999) whereas Stolc and co-workers said that stobadine is a well-known antioxidant, free radical scavenger, and neuroprotectant (Stolc, 2006), which preventes damage to Ca<sup>2+</sup> sequestering systems in endoplasmic reticulum and synaptosomes induced by lipid peroxidation initiators.

On studying the above mentioned literature about the antioxidant behavior of pyridoindole promoted us to theoretically develop moieties and screen them by the means of *in-silico* resources.

The QSAR studies are perfect tool for understanding the drug design process in terms of their chemical-pharmacological activity interaction. QSAR studies can focus on mechanism of action of ligands with human, bacteria, virus, membranes, enzymes etc. The QSAR methodology comprises of computationally derived descriptors to correlate with pharmacological activities. These descriptors are principally of four types such as electronic, stearic, hydrophobic and topological indices (Verma, 2010). The descriptors used for developing the QSAR model are AlogP, molecular weight, McGowan volume and topological polar surface area (TPSA) (Hou, 2003).

Rational drug design helps to facilitate and fasten the drug designing process, which involves various methods to identify novel compound, out of them one method is the docking of molecules with the receptor (Sharma, 2011). Docking procedures allows virtually screening a data-base of compounds and predict the strongest binder based on various scoring functions. It gives way in which two molecules such as drugs and an enzyme receptor fit together and dock to each other well (Shiva, 2010; Ajeet, 2012; Ajeet, 2013).

Molecular docking techniques are used in modern drug design to help understand drug-receptor interaction. It has been shown in the literature that these computational procedures can strongly support and help the design of new, more potent drugs by revealing the mechanism of drug-receptor interaction (Shiva, 2010; Ajeet, 2012; Ajeet, 2013).

In the present study, we developed a QSAR model on a series of pyrido-indole analogues with respect to their creatin kinase nhibition. Further, these analogues were passed with the model and screened molecules have been docked with the catalytic domain of creatin kinase for second line of screening based on ligand protein interaction.

## MATERIALS AND METHODS

All the bioactivity values and information about 2D structure of pyrido-indole derivatives (Figure 1) were taken from literature (Stolc, 2008). IC<sub>50</sub> is referred as the molar concentration of a compound that inhibits 50% growth of bacteria (Verma, 2010). -log IC<sub>50</sub> is subsequent variable that comprises the bioactivity parameter for the QSAR model. In order to calculate the 2D molecular descriptors, PaDEL descriptor software (Yap, 2011) which incorporate CDK library for descriptor calculation has been used after optimitizing the pyrido-indole derivatives. For the development of QSAR model, MLR (multiple linear regression) (Verma. 2010) has been employed and all were validated through statistics.

The novel pyrido-indole molecules have been designed and optimized through ChemDraw Ultra 7.0. and their bioactivity values have been calculated from developed QSAR model by putting the descriptor values in the QSAR equation. The docking studies (Shiva, 2010; Ajeet, 2012; Ajeet, 2013) of 8 novel pyrido-indole derivatives have been performed with the AutoDock Vina.

R111 R115 R116 сн₃ос == о CH2CH2OCH=O H<sub>3</sub>C CH<sub>3</sub> `СН₃ R123 R119 R121 ŅНСН=S CH2CH2CH2CH2OCH=C CH2CH2CHCH3 -сн₂осн=о R124 R129 R125 H<sub>3</sub>C  $H_3C$ снс—о N(CH<sub>3</sub>)<sub>2</sub> NH<sub>2</sub> N(CH<sub>3</sub>)<sub>2</sub> R131 R133 R132 HO. НО OHC R137 R140 R136 сн₂осн=о  $CH_2CH_2CH_2CH_2CCH=C$ сн₃ос—о OHC. OHC OHC

R142 R144 R143 сн₂осн=о сн₂осн=о OHC OHC R145 R147 R146 -сн₂осн=о сн₃ос == о OHC OHC. H<sub>3</sub>C  $H_3C$ R148 R149 R151 сн₃ос == о CH2CH2OCH=O  $CH_2CH_2CH_2CH_2OCH = 0$ OHC. R158 R159 R160 сн₃ос == о сн₂сн₂осн=о H<sub>3</sub>C R163 R165 R161  $CH_2CH_2CH_2OCH = O$  $CH_2CH_2CH_2CH_2OCH = O$ 



Figure 1: Structures of pyridoindole derivative used as training set for QSAR model

## **Statistical Parameters**

Fraction of variance  $(r^2)$ : The value of fraction of variance may vary between 0 (means model without explanatory power) and 1 (means perfect model). QSAR model having  $r^2 > 0.6$  will only be considered for validation (Verma, 2010).

Cross-validation Test  $(q^2)$ : A QSAR model must have  $q^2 > 0.5$  for the predictive ability (Verma, 2010). Standard deviation (s): The smaller s value is always required for the predictive QSAR model.

 $r^2$ - $q^2$  < 0.3: The difference between  $r^2$  and  $q^2$  should never be exceeding by 0.3. A large difference suggests the following: presence of outliers, over-fitted model, and presence of irrelevant variables in data (Verma, 2010).

Quality factor (Q): Over fitting and chance correlation, due to excess number of descriptors, can be detected by Q value. Positive value for this QSAR model suggests its high predictive power and lack of over fitting.

Fischer statistics (F): The F value of QSAR model was compared with their literature value at 95% level.

## **Model Validation**

The QSAR model validation was carried with statistical analysis and with internal validation.

CIBTech Journal of Pharmaceutical Sciences ISSN: 2319–3891 (Online) An Open Access, Online International Journal Available at http://www.cibtech.org/cjps.htm 2014 Vol.3 (1) January-March, pp.12-25/Maheshwari et al.

# Research Article

## **Docking Studies**

The designed novel pyrido-indole derivatives were docked into catalytic domain of creatin kinase. For this study, X-ray crystal structure of creatin kinase was taken from protein data bank with PDB id 3DRB.

## RESULTS AND DISCUSSION

From the data (Table 1), QSAR equation 1 have been developed and 95% confidence intervals are given in parenthesis as follows-

-log  $IC50=1.875051(\pm 0.5859609)$ -

 $0.1894421(\pm 0.1680057)(ALogP)$ -

 $0.0055141(\pm 0.008751)(MW) + 2.362933(\pm 1.09011)(MG) + 0.0022559(\pm 0.0097043)(TPSA)$  Eq. (1)

Where, MW- Molecular weight, MG- McGowan volume, TPSA-Topological polar surface area

Table 1: Descriptors used to derive QSAR equation along with bioactivities for the inhibition by pyridoindole analogues

| code         Obs.         Pred.         Diff.           R102         3.778         4.552264         -0.77426         -0.1652         188.1313         1.5442         15.27           R105         4.852         5.065406         -0.21341         1.2793         230.1782         1.9669         24.06           R106         4.641         4.589048         0.051952         -0.2547         188.1313         1.5442         24.06           R107         6.126         5.813027         0.312973         1.2468         292.1939         2.4338         15.27           R108         5.71         5.493891         0.216109         1.5819         278.1782         2.2929         15.27           R109         4.787         5.097506         -0.31051         0.0244         246.1368         1.9004         41.57           R111         5.388         5.236492         0.151508         1.7257         244.1939         2.1078         24.06           R115         5.551         5.420449         0.130551         0.5808         260.1524         2.1069         49.41           R116         5.804         5.420449         0.383551         0.5808         260.1524         2.1069         49.41                                                                                                                                                     | Training set | -log IC | 50       |          | ALogP   | MW       | MG     | TPSA  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|----------|----------|---------|----------|--------|-------|
| R102         3.778         4.552264         -0.77426         -0.1652         188.1313         1.5442         15.27           R105         4.852         5.065406         -0.21341         1.2793         230.1782         1.96699         24.06           R106         4.641         4.589048         0.051952         -0.2547         188.1313         1.5442         24.06           R107         6.126         5.813027         0.312973         1.2468         292.1939         2.4338         15.27           R108         5.71         5.493891         0.216109         1.5819         278.1782         2.2929         15.27           R109         4.787         5.097506         -0.31051         0.0244         246.1368         1.9004         41.57           R111         5.388         5.236492         0.151508         1.7257         244.1939         2.1078         24.06           R115         5.551         5.420449         0.130551         0.5808         260.1524         2.1069         49.41           R116         5.804         5.420449         0.383551         0.5808         260.1524         2.1069         49.41           R119         6.263         6.14132         0.12168         -0.0875 </th <th>_</th> <th></th> <th></th> <th>Diff.</th> <th>_ ~</th> <th></th> <th></th> <th></th>                                 | _            |         |          | Diff.    | _ ~     |          |        |       |
| R106         4.641         4.589048         0.051952         -0.2547         188.1313         1.5442         24.06           R107         6.126         5.813027         0.312973         1.2468         292.1939         2.4338         15.27           R108         5.71         5.493891         0.216109         1.5819         278.1782         2.2929         15.27           R109         4.787         5.097506         -0.31051         0.0244         246.1368         1.9004         41.57           R111         5.388         5.236492         0.151508         1.7257         244.1939         2.1078         24.06           R115         5.551         5.420449         0.130551         0.5808         260.1524         2.1069         49.41           R116         5.804         5.420449         0.383551         0.5808         260.1524         2.1069         49.41           R119         6.263         6.14132         0.12168         -0.0875         302.1994         2.464         41.57           R121         6.287         6.14022         0.14678         1.2379         336.1837         2.6491         41.57           R123         5.799         6.323739         -0.52474         0.5452                                                                                                                                    | R102         |         | 4.552264 | -0.77426 | -0.1652 | 188.1313 | 1.5442 | 15.27 |
| R107         6.126         5.813027         0.312973         1.2468         292.1939         2.4338         15.27           R108         5.71         5.493891         0.216109         1.5819         278.1782         2.2929         15.27           R109         4.787         5.097506         -0.31051         0.0244         246.1368         1.9004         41.57           R111         5.388         5.236492         0.151508         1.7257         244.1939         2.1078         24.06           R115         5.551         5.420449         0.130551         0.5808         260.1524         2.1069         49.41           R116         5.804         5.420449         0.383551         0.5808         260.1524         2.1069         49.41           R119         6.263         6.14132         0.12168         -0.0875         302.1994         2.464         41.57           R121         6.287         6.14022         0.14678         1.2379         336.1837         2.6491         41.57           R123         5.799         6.323739         -0.52474         0.5452         317.1926         2.6099         99.39           R124         5.509         5.161805         0.347195         -0.9155                                                                                                                                    | R105         | 4.852   | 5.065406 | -0.21341 | 1.2793  | 230.1782 | 1.9669 | 24.06 |
| R108         5.71         5.493891         0.216109         1.5819         278.1782         2.2929         15.27           R109         4.787         5.097506         -0.31051         0.0244         246.1368         1.9004         41.57           R111         5.388         5.236492         0.151508         1.7257         244.1939         2.1078         24.06           R115         5.551         5.420449         0.130551         0.5808         260.1524         2.1069         49.41           R116         5.804         5.420449         0.133551         0.5808         260.1524         2.1069         49.41           R119         6.263         6.14132         0.12168         -0.0875         302.1994         2.464         41.57           R121         6.287         6.14022         0.14678         1.2379         336.1837         2.6491         41.57           R123         5.799         6.323739         -0.52474         0.5452         317.1926         2.6099         59.39           R124         5.509         5.161805         0.347195         -0.9155         217.1578         1.7849         41.29           R125         5.62         5.438399         0.181601         0.0522                                                                                                                                     | R106         | 4.641   | 4.589048 | 0.051952 | -0.2547 | 188.1313 | 1.5442 | 24.06 |
| R109         4.787         5.097506         -0.31051         0.0244         246.1368         1.9004         41.57           R111         5.388         5.236492         0.151508         1.7257         244.1939         2.1078         24.06           R115         5.551         5.420449         0.130551         0.5808         260.1524         2.1069         49.41           R116         5.804         5.420449         0.383551         0.5808         260.1524         2.1069         49.41           R119         6.263         6.14132         0.12168         -0.0875         302.1994         2.464         41.57           R121         6.287         6.14022         0.14678         1.2379         336.1837         2.6491         41.57           R123         5.799         6.323739         -0.52474         0.5452         317.1926         2.6099         59.39           R124         5.509         5.161805         0.347195         -0.9155         217.1578         1.7849         41.29           R125         5.62         5.438399         0.181601         0.0522         245.1891         2.0667         18.51           R129         5.428         5.81457         -0.38657         0.1754                                                                                                                                     | R107         | 6.126   | 5.813027 | 0.312973 | 1.2468  | 292.1939 | 2.4338 | 15.27 |
| R111         5.388         5.236492         0.151508         1.7257         244.1939         2.1078         24.06           R115         5.551         5.420449         0.130551         0.5808         260.1524         2.1069         49.41           R116         5.804         5.420449         0.383551         0.5808         260.1524         2.1069         49.41           R119         6.263         6.14132         0.12168         -0.0875         302.1994         2.464         41.57           R121         6.287         6.14022         0.14678         1.2379         336.1837         2.6491         41.57           R123         5.799         6.323739         -0.52474         0.5452         317.1926         2.6099         59.39           R124         5.509         5.161805         0.347195         -0.9155         217.1578         1.7849         41.29           R125         5.62         5.438399         0.181601         0.0522         245.1891         2.0667         18.51           R129         5.428         5.81457         -0.38657         0.1754         285.1841         2.3212         26.79           R131         4.905         4.620781         0.284219         -1.2642                                                                                                                                    | R108         | 5.71    | 5.493891 | 0.216109 | 1.5819  | 278.1782 | 2.2929 | 15.27 |
| R115         5.551         5.420449         0.130551         0.5808         260.1524         2.1069         49.41           R116         5.804         5.420449         0.383551         0.5808         260.1524         2.1069         49.41           R119         6.263         6.14132         0.12168         -0.0875         302.1994         2.464         41.57           R121         6.287         6.14022         0.14678         1.2379         336.1837         2.6491         41.57           R123         5.799         6.323739         -0.52474         0.5452         317.1926         2.6099         59.39           R124         5.509         5.161805         0.347195         -0.9155         217.1578         1.7849         41.29           R125         5.62         5.438399         0.181601         0.0522         245.1891         2.0667         18.51           R129         5.428         5.81457         -0.38657         0.1754         285.1841         2.3212         26.79           R131         4.905         4.620781         0.284219         -1.2642         190.1106         1.462         44.29           R132         4.673         4.755083         -0.08208         -0.7283                                                                                                                                    | R109         | 4.787   | 5.097506 | -0.31051 | 0.0244  | 246.1368 | 1.9004 | 41.57 |
| R116         5.804         5.420449         0.383551         0.5808         260.1524         2.1069         49.41           R119         6.263         6.14132         0.12168         -0.0875         302.1994         2.464         41.57           R121         6.287         6.14022         0.14678         1.2379         336.1837         2.6491         41.57           R123         5.799         6.323739         -0.52474         0.5452         317.1926         2.6099         59.39           R124         5.509         5.161805         0.347195         -0.9155         217.1578         1.7849         41.29           R125         5.62         5.438399         0.181601         0.0522         245.1891         2.0667         18.51           R129         5.428         5.81457         -0.38657         0.1754         285.1841         2.3212         26.79           R131         4.905         4.620781         0.284219         -1.2642         190.1106         1.462         44.29           R132         4.673         4.745643         0.168357         -1.0891         202.1106         1.5599         41.13           R136         5.282         5.405957         -0.12396         -0.7                                                                                                                                      | R111         | 5.388   | 5.236492 | 0.151508 | 1.7257  | 244.1939 | 2.1078 | 24.06 |
| R119         6.263         6.14132         0.12168         -0.0875         302.1994         2.464         41.57           R121         6.287         6.14022         0.14678         1.2379         336.1837         2.6491         41.57           R123         5.799         6.323739         -0.52474         0.5452         317.1926         2.6099         59.39           R124         5.509         5.161805         0.347195         -0.9155         217.1578         1.7849         41.29           R125         5.62         5.438399         0.181601         0.0522         245.1891         2.0667         18.51           R129         5.428         5.81457         -0.38657         0.1754         285.1841         2.3212         26.79           R131         4.905         4.620781         0.284219         -1.2642         190.1106         1.462         442.29           R132         4.673         4.755083         -0.08208         -0.7283         204.1262         1.6029         35.5           R133         4.914         4.745643         0.168357         -1.0891         202.1106         1.5599         41.13           R136         5.282         5.405957         -0.12396         -0.7                                                                                                                                     | R115         | 5.551   | 5.420449 | 0.130551 | 0.5808  | 260.1524 | 2.1069 | 49.41 |
| R121         6.287         6.14022         0.14678         1.2379         336.1837         2.6491         41.57           R123         5.799         6.323739         -0.52474         0.5452         317.1926         2.6099         59.39           R124         5.509         5.161805         0.347195         -0.9155         217.1578         1.7849         41.29           R125         5.62         5.438399         0.181601         0.0522         245.1891         2.0667         18.51           R129         5.428         5.81457         -0.38657         0.1754         285.1841         2.3212         26.79           R131         4.905         4.620781         0.284219         -1.2642         190.1106         1.462         44.29           R132         4.673         4.755083         -0.08208         -0.7283         204.1262         1.6029         35.5           R133         4.914         4.745643         0.168357         -1.0891         202.1106         1.5599         41.13           R136         5.282         5.405957         -0.12396         -0.7         260.1160         1.9817         66.48           R137         5.487         5.254101         0.232899         -0.81                                                                                                                                     | R116         | 5.804   | 5.420449 | 0.383551 | 0.5808  | 260.1524 | 2.1069 | 49.41 |
| R123         5.799         6.323739         -0.52474         0.5452         317.1926         2.6099         59.39           R124         5.509         5.161805         0.347195         -0.9155         217.1578         1.7849         41.29           R125         5.62         5.438399         0.181601         0.0522         245.1891         2.0667         18.51           R129         5.428         5.81457         -0.38657         0.1754         285.1841         2.3212         26.79           R131         4.905         4.620781         0.284219         -1.2642         190.1106         1.462         44.29           R132         4.673         4.755083         -0.08208         -0.7283         204.1262         1.6029         35.5           R133         4.914         4.745643         0.168357         -1.0891         202.1106         1.5599         41.13           R136         5.282         5.405957         -0.12396         -0.7         260.1160         1.9817         66.48           R137         5.487         5.254101         0.232899         -0.81         260.1160         1.9161         58.64           R140         6.0246         6.125727         0.120273         -0.0429 <td>R119</td> <td>6.263</td> <td>6.14132</td> <td>0.12168</td> <td>-0.0875</td> <td>302.1994</td> <td>2.464</td> <td>41.57</td> | R119         | 6.263   | 6.14132  | 0.12168  | -0.0875 | 302.1994 | 2.464  | 41.57 |
| R124         5.509         5.161805         0.347195         -0.9155         217.1578         1.7849         41.29           R125         5.62         5.438399         0.181601         0.0522         245.1891         2.0667         18.51           R129         5.428         5.81457         -0.38657         0.1754         285.1841         2.3212         26.79           R131         4.905         4.620781         0.284219         -1.2642         190.1106         1.462         44.29           R132         4.673         4.755083         -0.08208         -0.7283         204.1262         1.6029         35.5           R133         4.914         4.745643         0.168357         -1.0891         202.1106         1.5599         41.13           R136         5.282         5.405957         -0.12396         -0.7         260.1160         1.9817         66.48           R137         5.487         5.254101         0.232899         -0.81         260.1160         1.9161         58.64           R140         6.024         6.126828         -0.10283         -1.3683         302.1630         2.3388         58.64           R142         6.246         6.125727         0.120273         -0.0429 <td>R121</td> <td>6.287</td> <td>6.14022</td> <td>0.14678</td> <td>1.2379</td> <td>336.1837</td> <td>2.6491</td> <td>41.57</td> | R121         | 6.287   | 6.14022  | 0.14678  | 1.2379  | 336.1837 | 2.6491 | 41.57 |
| R125         5.62         5.438399         0.181601         0.0522         245.1891         2.0667         18.51           R129         5.428         5.81457         -0.38657         0.1754         285.1841         2.3212         26.79           R131         4.905         4.620781         0.284219         -1.2642         190.1106         1.462         44.29           R132         4.673         4.755083         -0.08208         -0.7283         204.1262         1.6029         35.5           R133         4.914         4.745643         0.168357         -1.0891         202.1106         1.5599         41.13           R136         5.282         5.405957         -0.12396         -0.7         260.1160         1.9817         66.48           R137         5.487         5.254101         0.232899         -0.81         260.1160         1.9161         58.64           R140         6.024         6.126828         -0.10283         -1.3683         302.1630         2.3388         58.64           R142         6.246         6.125727         0.120273         -0.0429         336.1473         2.5239         58.64           R143         5.328         4.91673         0.41127         -0.6427                                                                                                                                   | R123         | 5.799   | 6.323739 | -0.52474 | 0.5452  | 317.1926 | 2.6099 | 59.39 |
| R129         5.428         5.81457         -0.38657         0.1754         285.1841         2.3212         26.79           R131         4.905         4.620781         0.284219         -1.2642         190.1106         1.462         44.29           R132         4.673         4.755083         -0.08208         -0.7283         204.1262         1.6029         35.5           R133         4.914         4.745643         0.168357         -1.0891         202.1106         1.5599         41.13           R136         5.282         5.405957         -0.12396         -0.7         260.1160         1.9817         66.48           R137         5.487         5.254101         0.232899         -0.81         260.1160         1.9161         58.64           R140         6.024         6.126828         -0.10283         -1.3683         302.1630         2.3388         58.64           R142         6.246         6.125727         0.120273         -0.0429         336.1473         2.5239         58.64           R143         5.328         4.91673         0.41127         -0.6427         216.1262         1.7008         41.13           R144         5.12         5.425187         -0.30519         -0.3636                                                                                                                                  | R124         | 5.509   | 5.161805 | 0.347195 | -0.9155 | 217.1578 | 1.7849 | 41.29 |
| R131       4.905       4.620781       0.284219       -1.2642       190.1106       1.462       44.29         R132       4.673       4.755083       -0.08208       -0.7283       204.1262       1.6029       35.5         R133       4.914       4.745643       0.168357       -1.0891       202.1106       1.5599       41.13         R136       5.282       5.405957       -0.12396       -0.7       260.1160       1.9817       66.48         R137       5.487       5.254101       0.232899       -0.81       260.1160       1.9161       58.64         R140       6.024       6.126828       -0.10283       -1.3683       302.1630       2.3388       58.64         R142       6.246       6.125727       0.120273       -0.0429       336.1473       2.5239       58.64         R143       5.328       4.91673       0.41127       -0.6427       216.1262       1.7008       41.13         R144       5.12       5.425187       -0.30519       -0.3636       274.1317       2.057       58.64         R145       6.563       6.296814       0.266186       0.4035       350.1630       2.6648       58.64         R147       5.059       5.0878                                                                                                                                                                                                            | R125         | 5.62    | 5.438399 | 0.181601 | 0.0522  | 245.1891 | 2.0667 | 18.51 |
| R132       4.673       4.755083       -0.08208       -0.7283       204.1262       1.6029       35.5         R133       4.914       4.745643       0.168357       -1.0891       202.1106       1.5599       41.13         R136       5.282       5.405957       -0.12396       -0.7       260.1160       1.9817       66.48         R137       5.487       5.254101       0.232899       -0.81       260.1160       1.9161       58.64         R140       6.024       6.126828       -0.10283       -1.3683       302.1630       2.3388       58.64         R142       6.246       6.125727       0.120273       -0.0429       336.1473       2.5239       58.64         R143       5.328       4.91673       0.41127       -0.6427       216.1262       1.7008       41.13         R144       5.12       5.425187       -0.30519       -0.3636       274.1317       2.057       58.64         R145       6.563       6.296814       0.266186       0.4035       350.1630       2.6648       58.64         R147       5.059       5.087817       -0.02882       -0.1963       230.1419       1.8417       41.13         R148       5.509       5.748                                                                                                                                                                                                            | R129         | 5.428   | 5.81457  | -0.38657 | 0.1754  | 285.1841 | 2.3212 | 26.79 |
| R133       4.914       4.745643       0.168357       -1.0891       202.1106       1.5599       41.13         R136       5.282       5.405957       -0.12396       -0.7       260.1160       1.9817       66.48         R137       5.487       5.254101       0.232899       -0.81       260.1160       1.9161       58.64         R140       6.024       6.126828       -0.10283       -1.3683       302.1630       2.3388       58.64         R142       6.246       6.125727       0.120273       -0.0429       336.1473       2.5239       58.64         R143       5.328       4.91673       0.41127       -0.6427       216.1262       1.7008       41.13         R144       5.12       5.425187       -0.30519       -0.3636       274.1317       2.057       58.64         R145       6.563       6.296814       0.266186       0.4035       350.1630       2.6648       58.64         R146       5.491       5.646278       -0.15528       0.6455       366.0579       2.4385       66.48         R147       5.059       5.087817       -0.02882       -0.1963       230.1419       1.8417       41.13         R148       5.509       5.748                                                                                                                                                                                                            | R131         | 4.905   | 4.620781 | 0.284219 | -1.2642 | 190.1106 | 1.462  | 44.29 |
| R136       5.282       5.405957       -0.12396       -0.7       260.1160       1.9817       66.48         R137       5.487       5.254101       0.232899       -0.81       260.1160       1.9161       58.64         R140       6.024       6.126828       -0.10283       -1.3683       302.1630       2.3388       58.64         R142       6.246       6.125727       0.120273       -0.0429       336.1473       2.5239       58.64         R143       5.328       4.91673       0.41127       -0.6427       216.1262       1.7008       41.13         R144       5.12       5.425187       -0.30519       -0.3636       274.1317       2.057       58.64         R145       6.563       6.296814       0.266186       0.4035       350.1630       2.6648       58.64         R146       5.491       5.646278       -0.15528       0.6455       366.0579       2.4385       66.48         R147       5.059       5.748131       -0.23913       0.1928       288.1473       2.2635       66.48         R149       5.925       6.349729       -0.42473       0.1005       318.1943       2.5883       58.64         R151       6.474       6.46900                                                                                                                                                                                                            | R132         | 4.673   | 4.755083 | -0.08208 | -0.7283 | 204.1262 | 1.6029 | 35.5  |
| R137       5.487       5.254101       0.232899       -0.81       260.1160       1.9161       58.64         R140       6.024       6.126828       -0.10283       -1.3683       302.1630       2.3388       58.64         R142       6.246       6.125727       0.120273       -0.0429       336.1473       2.5239       58.64         R143       5.328       4.91673       0.41127       -0.6427       216.1262       1.7008       41.13         R144       5.12       5.425187       -0.30519       -0.3636       274.1317       2.057       58.64         R145       6.563       6.296814       0.266186       0.4035       350.1630       2.6648       58.64         R146       5.491       5.646278       -0.15528       0.6455       366.0579       2.4385       66.48         R147       5.059       5.087817       -0.02882       -0.1963       230.1419       1.8417       41.13         R148       5.509       5.748131       -0.23913       0.1928       288.1473       2.2635       66.48         R149       5.925       6.349729       -0.42473       0.1005       318.1943       2.5883       58.64         R151       6.474       6.46                                                                                                                                                                                                            | R133         | 4.914   | 4.745643 | 0.168357 | -1.0891 | 202.1106 | 1.5599 | 41.13 |
| R140       6.024       6.126828       -0.10283       -1.3683       302.1630       2.3388       58.64         R142       6.246       6.125727       0.120273       -0.0429       336.1473       2.5239       58.64         R143       5.328       4.91673       0.41127       -0.6427       216.1262       1.7008       41.13         R144       5.12       5.425187       -0.30519       -0.3636       274.1317       2.057       58.64         R145       6.563       6.296814       0.266186       0.4035       350.1630       2.6648       58.64         R146       5.491       5.646278       -0.15528       0.6455       366.0579       2.4385       66.48         R147       5.059       5.087817       -0.02882       -0.1963       230.1419       1.8417       41.13         R148       5.509       5.748131       -0.23913       0.1928       288.1473       2.2635       66.48         R149       5.925       6.349729       -0.42473       0.1005       318.1943       2.5883       58.64         R151       6.474       6.469001       0.004999       -0.4755       330.1943       2.6206       58.64         R159       5.348       5.                                                                                                                                                                                                            | R136         | 5.282   | 5.405957 | -0.12396 | -0.7    | 260.1160 | 1.9817 | 66.48 |
| R142       6.246       6.125727       0.120273       -0.0429       336.1473       2.5239       58.64         R143       5.328       4.91673       0.41127       -0.6427       216.1262       1.7008       41.13         R144       5.12       5.425187       -0.30519       -0.3636       274.1317       2.057       58.64         R145       6.563       6.296814       0.266186       0.4035       350.1630       2.6648       58.64         R146       5.491       5.646278       -0.15528       0.6455       366.0579       2.4385       66.48         R147       5.059       5.087817       -0.02882       -0.1963       230.1419       1.8417       41.13         R148       5.509       5.748131       -0.23913       0.1928       288.1473       2.2635       66.48         R149       5.925       6.349729       -0.42473       0.1005       318.1943       2.5883       58.64         R151       6.474       6.469001       0.004999       -0.4755       330.1943       2.6206       58.64         R159       5.348       5.420449       -0.07245       0.5808       260.1524       2.1069       49.41                                                                                                                                                                                                                                               | R137         | 5.487   | 5.254101 | 0.232899 | -0.81   | 260.1160 | 1.9161 | 58.64 |
| R143       5.328       4.91673       0.41127       -0.6427       216.1262       1.7008       41.13         R144       5.12       5.425187       -0.30519       -0.3636       274.1317       2.057       58.64         R145       6.563       6.296814       0.266186       0.4035       350.1630       2.6648       58.64         R146       5.491       5.646278       -0.15528       0.6455       366.0579       2.4385       66.48         R147       5.059       5.087817       -0.02882       -0.1963       230.1419       1.8417       41.13         R148       5.509       5.748131       -0.23913       0.1928       288.1473       2.2635       66.48         R149       5.925       6.349729       -0.42473       0.1005       318.1943       2.5883       58.64         R151       6.474       6.469001       0.004999       -0.4755       330.1943       2.6206       58.64         R158       4.91       4.760135       0.149865       0.1917       202.1469       1.6851       24.06         R159       5.348       5.420449       -0.07245       0.5808       260.1524       2.1069       49.41                                                                                                                                                                                                                                                 | R140         | 6.024   | 6.126828 | -0.10283 | -1.3683 | 302.1630 | 2.3388 | 58.64 |
| R144       5.12       5.425187       -0.30519       -0.3636       274.1317       2.057       58.64         R145       6.563       6.296814       0.266186       0.4035       350.1630       2.6648       58.64         R146       5.491       5.646278       -0.15528       0.6455       366.0579       2.4385       66.48         R147       5.059       5.087817       -0.02882       -0.1963       230.1419       1.8417       41.13         R148       5.509       5.748131       -0.23913       0.1928       288.1473       2.2635       66.48         R149       5.925       6.349729       -0.42473       0.1005       318.1943       2.5883       58.64         R151       6.474       6.469001       0.004999       -0.4755       330.1943       2.6206       58.64         R158       4.91       4.760135       0.149865       0.1917       202.1469       1.6851       24.06         R159       5.348       5.420449       -0.07245       0.5808       260.1524       2.1069       49.41                                                                                                                                                                                                                                                                                                                                                            | R142         | 6.246   | 6.125727 | 0.120273 | -0.0429 | 336.1473 | 2.5239 | 58.64 |
| R145       6.563       6.296814       0.266186       0.4035       350.1630       2.6648       58.64         R146       5.491       5.646278       -0.15528       0.6455       366.0579       2.4385       66.48         R147       5.059       5.087817       -0.02882       -0.1963       230.1419       1.8417       41.13         R148       5.509       5.748131       -0.23913       0.1928       288.1473       2.2635       66.48         R149       5.925       6.349729       -0.42473       0.1005       318.1943       2.5883       58.64         R151       6.474       6.469001       0.004999       -0.4755       330.1943       2.6206       58.64         R158       4.91       4.760135       0.149865       0.1917       202.1469       1.6851       24.06         R159       5.348       5.420449       -0.07245       0.5808       260.1524       2.1069       49.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R143         | 5.328   | 4.91673  | 0.41127  | -0.6427 | 216.1262 | 1.7008 | 41.13 |
| R146       5.491       5.646278       -0.15528       0.6455       366.0579       2.4385       66.48         R147       5.059       5.087817       -0.02882       -0.1963       230.1419       1.8417       41.13         R148       5.509       5.748131       -0.23913       0.1928       288.1473       2.2635       66.48         R149       5.925       6.349729       -0.42473       0.1005       318.1943       2.5883       58.64         R151       6.474       6.469001       0.004999       -0.4755       330.1943       2.6206       58.64         R158       4.91       4.760135       0.149865       0.1917       202.1469       1.6851       24.06         R159       5.348       5.420449       -0.07245       0.5808       260.1524       2.1069       49.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R144         | 5.12    | 5.425187 | -0.30519 | -0.3636 | 274.1317 | 2.057  | 58.64 |
| R147       5.059       5.087817       -0.02882       -0.1963       230.1419       1.8417       41.13         R148       5.509       5.748131       -0.23913       0.1928       288.1473       2.2635       66.48         R149       5.925       6.349729       -0.42473       0.1005       318.1943       2.5883       58.64         R151       6.474       6.469001       0.004999       -0.4755       330.1943       2.6206       58.64         R158       4.91       4.760135       0.149865       0.1917       202.1469       1.6851       24.06         R159       5.348       5.420449       -0.07245       0.5808       260.1524       2.1069       49.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R145         | 6.563   | 6.296814 | 0.266186 | 0.4035  | 350.1630 | 2.6648 | 58.64 |
| R148       5.509       5.748131       -0.23913       0.1928       288.1473       2.2635       66.48         R149       5.925       6.349729       -0.42473       0.1005       318.1943       2.5883       58.64         R151       6.474       6.469001       0.004999       -0.4755       330.1943       2.6206       58.64         R158       4.91       4.760135       0.149865       0.1917       202.1469       1.6851       24.06         R159       5.348       5.420449       -0.07245       0.5808       260.1524       2.1069       49.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | R146         | 5.491   | 5.646278 | -0.15528 | 0.6455  | 366.0579 | 2.4385 | 66.48 |
| R149       5.925       6.349729       -0.42473       0.1005       318.1943       2.5883       58.64         R151       6.474       6.469001       0.004999       -0.4755       330.1943       2.6206       58.64         R158       4.91       4.760135       0.149865       0.1917       202.1469       1.6851       24.06         R159       5.348       5.420449       -0.07245       0.5808       260.1524       2.1069       49.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R147         | 5.059   | 5.087817 | -0.02882 | -0.1963 | 230.1419 | 1.8417 | 41.13 |
| R151 6.474 6.469001 0.004999 -0.4755 330.1943 2.6206 58.64<br>R158 4.91 4.760135 0.149865 0.1917 202.1469 1.6851 24.06<br>R159 5.348 5.420449 -0.07245 0.5808 260.1524 2.1069 49.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | R148         | 5.509   | 5.748131 | -0.23913 | 0.1928  | 288.1473 | 2.2635 | 66.48 |
| R158 4.91 4.760135 0.149865 0.1917 202.1469 1.6851 24.06<br>R159 5.348 5.420449 -0.07245 0.5808 260.1524 2.1069 49.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R149         | 5.925   | 6.349729 | -0.42473 | 0.1005  | 318.1943 | 2.5883 | 58.64 |
| R159 5.348 5.420449 -0.07245 0.5808 260.1524 2.1069 49.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R151         | 6.474   | 6.469001 | 0.004999 | -0.4755 | 330.1943 | 2.6206 | 58.64 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R158         | 4.91    | 4.760135 | 0.149865 | 0.1917  | 202.1469 | 1.6851 | 24.06 |
| R160 5.609 5.520894 0.088106 0.4885 274.1681 2.1822 41.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R159         | 5.348   | 5.420449 | -0.07245 | 0.5808  | 260.1524 | 2.1069 | 49.41 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R160         | 5.609   | 5.520894 | 0.088106 | 0.4885  | 274.1681 | 2.1822 | 41.57 |

| R161     | 5.909 | 5.831107 | 0.077893 | 0.2005  | 288.1837 | 2.3231 | 41.57 |
|----------|-------|----------|----------|---------|----------|--------|-------|
| R163     | 6.032 | 6.14132  | -0.10932 | -0.0875 | 302.1994 | 2.464  | 41.57 |
| R165     | 6.25  | 6.14022  | 0.10978  | 1.2379  | 336.1837 | 2.6491 | 41.57 |
| R166     | 4.969 | 4.760135 | 0.208865 | 0.1917  | 202.1469 | 1.6851 | 24.06 |
| R169     | 6.039 | 5.831107 | 0.207893 | 0.2005  | 288.1837 | 2.3231 | 41.57 |
| R171     | 6.105 | 6.14132  | -0.03632 | -0.0875 | 302.1994 | 2.464  | 41.57 |
| R174     | 5.731 | 5.520894 | 0.210106 | 0.4885  | 274.1681 | 2.1822 | 41.57 |
| R175     | 6.008 | 5.831107 | 0.176893 | 0.2005  | 288.1837 | 2.3231 | 41.57 |
| R177     | 6.012 | 6.14022  | -0.12822 | 1.2379  | 336.1837 | 2.6491 | 41.57 |
| R178     | 4.234 | 4.723351 | -0.48935 | 0.2812  | 202.1469 | 1.6851 | 15.27 |
| Stobadin | 4.469 | 4.723351 | -0.25435 | 0.2812  | 202.1469 | 1.6851 | 15.27 |

# Validation of QSAR Model

A quantitative assessment of model robustness has been performed through model validation. All the statistical results of model validation have been given (Table 2).

**Table 2: Results of statistical validation** 

| r <sup>2</sup> | LOO-<br>q <sup>2</sup> | LFO-<br>q <sup>2</sup> | S    | r <sup>2</sup> - LOOq <sup>2</sup> < 0.3 | $r^2$ - LFO $q^2$ < 0.3 | Q    | RMSD   | Variance | F     |
|----------------|------------------------|------------------------|------|------------------------------------------|-------------------------|------|--------|----------|-------|
| 0.8202         | 0.8222                 | 0.8235                 | 0.59 | -0.00197                                 | -0.00327                | 1 52 | 0.0396 | 0.0701   | 44.47 |

## **Internal Validation**

Bioactivity calculation for test set from developed QSAR model: In this type of internal validation, the test set has to pass the developed QSAR model. (Figure 2, Table 3)

Figure 2: Structures of test set

Table 3: Calculated -log IC50 for test set from developed QSAR model

|          |         |          |        |             | Observed  |              |         |
|----------|---------|----------|--------|-------------|-----------|--------------|---------|
| Test set | ALogP   | MW       | MG     | <b>TPSA</b> | -log IC50 | Predlog IC50 | Diff.   |
| R114     | 0.7466  | 321.1841 | 2.5493 | 44.7        | 4.793     | 6.2388       | -1.4458 |
| R117     | 0.2005  | 288.1838 | 2.3231 | 41.57       | 6.084     | 5.9664       | 0.1175  |
| R126     | 0.4945  | 247.1321 | 1.8593 | 58.41       | 1.684     | 5.0543       | -3.3703 |
| R128     | 0.7339  | 280.0575 | 1.8601 | 15.27       | 1         | 4.7601       | -3.7601 |
| R130     | 0.4708  | 260.1525 | 2.0413 | 41.57       | 5.948     | 5.3899       | 0.5580  |
| R134     | -0.5532 | 216.1263 | 1.7008 | 32.34       | 4.698     | 4.9808       | -0.2828 |
| R135     | -0.9659 | 242.1055 | 1.8144 | 49.41       | 4.543     | 5.2314       | -0.6884 |
| R150     | -0.1875 | 316.1787 | 2.4797 | 58.64       | 6.098     | 6.3038       | -0.2058 |
| R153     | 0.8499  | 364.1787 | 2.8057 | 58.64       | 5.759     | 6.6378       | -0.8788 |
| R155     | 0.9412  | 352.0786 | 2.3572 | 41.57       | 5.955     | 5.5875       | 0.3674  |
| R156     | 0.6532  | 366.0943 | 2.4981 | 41.57       | 6.002     | 5.9047       | 0.0972  |
| R157     | 1.6906  | 414.0943 | 2.8241 | 41.57       | 5.944     | 6.2386       | -0.2946 |

Y-Randomization Test: This technique is used to establish the QSAR model robustness. For this test, the dependent variable vector is randomly shuffled, and a new QSAR model is developed using the unchanged independent variable. This process was repeated for five times. The statistical data of  $r^2$  for five runs are given (Table 4). The values  $r^2$ <0.6in Y-randomization test confirm the robustness of this QSAR model (Verma, 2010).

**Table 4: Results of internal validation: Y-randomization test (5 runs)** 

| No.            | of<br>omiza | Y-<br>tion | First  | Second | Third  | Fourth | Fifth  |  |
|----------------|-------------|------------|--------|--------|--------|--------|--------|--|
| $\mathbf{r}^2$ |             |            | 0.1221 | 0.4409 | 0.1221 | 0.1221 | 0.1221 |  |

A comparison (MLR plots) of observed values and predicted values of -log IC50 for pyridoindole derivatives used for development of QSAR equation is shown in Figure 3 and radar graph is shown in Figure 4.



Figure 3: Multiple linear regression plot for QSAR study



Figure 4: Radar graph between observed and predicted bioactivities (pIC50 ~-log IC50)

## Designing and optimization of novel pyridoindole derivatives

The novel pyridoindole derivatives (Figure 5) were designed and their energy minimization for highest stability was performed. Details of calculated descriptor values and predicted bioactivity through derived QSAR model have been given (Table 5).



Figure 5: Novel designed pyridoindole derivatives

Table 5: Predicted -log IC50 of novel designed pyridoindole derivatives

| Novel designed derivatives | -log IC50<br>Predicted | ALogP   | MW       | MG     | TPSA  |
|----------------------------|------------------------|---------|----------|--------|-------|
| RA1                        | 4.791437               | -0.6369 | 206.0878 | 1.5668 | 62.86 |
| RA2                        | 4.935299               | -0.101  | 220.1034 | 1.7077 | 54.07 |
| RA3                        | 4.727621               | 0.114   | 222.0924 | 1.6666 | 24.06 |
| RA4                        | 4.969795               | -0.1905 | 220.1034 | 1.7077 | 62.86 |
| RA5                        | 5.261208               | 0.3931  | 280.0979 | 2.0228 | 41.57 |
| RA6                        | 5.503382               | 0.0886  | 278.1089 | 2.0639 | 80.37 |
| RA7                        | 6.171694               | 1.1602  | 356.1292 | 2.6306 | 41.57 |
| RA8                        | 6.413867               | 0.8557  | 354.1402 | 2.6717 | 80.37 |

# **Docking Results**

Binding site analysis

The experimental analysis of binding site shows that Arg 130, Arg 96, Gly 331, Arg 252, Ser 128, Ser 285, Thr 322 and Thr 224 could be the catalytic site residue present in the structure of creatin kinase.

Docking studies of novel pyridoindole derivatives with creatin kinase

Docking studies showed that derivatives RA5, RA6 and RA7 were docked by overlapping with stobadin; a pre-existing creatin kinase inhibitor. The best pose interaction energy was found to be as -6.6 Kcal/mol, -6 Kcal/mol and -6.9 Kcal/mol. Here, negative values for interaction energy would reflect the positive docking approach. Number of hydrogen bonds and other binding details (Table 6) and docking images (Figure 6) are given.

Table 6: Docking results of novel pyridoindole derivatives

| Ligand   | Receptor | Affinity | H-bonds | H- Binding Ligand |         |          |         | H- Binding Receptor |        |          |  |
|----------|----------|----------|---------|-------------------|---------|----------|---------|---------------------|--------|----------|--|
|          |          | Kcal/mol |         | Elem.             | At. ID. | Type     | Res.    | Elem.               | At.ID. | Type     |  |
| RA1      |          | -5.9     | 0       | -                 | -       | -        | -       | -                   | -      | -        |  |
| RA2      |          | -6.6     | 1       | N                 | 06      | Donor    | Tyr173  | O                   | 1298   | Acceptor |  |
| RA3      |          | -6.8     | 0       | -                 | -       | -        | -       | -                   | -      | -        |  |
| RA4      |          | -6.9     | 2       | N                 | 6       | Donor    | Gly 331 | O                   | 2570   | Acceptor |  |
|          |          |          |         | S                 | 16      | Donor    | Thr 322 | О                   | 2516   | Acceptor |  |
| RA5      |          | -6.6     | 4       | O                 | 19      | Accepter | Arg 130 | N                   | 977    | Donor    |  |
|          | 3DRB     |          |         | O                 | 19      | Acceptor | Ser 128 | O                   | 960    | Both     |  |
|          | SDKD     |          |         | O                 | 17      | Acceptor | Ser 128 | O                   | 960    | Both     |  |
|          |          |          |         | N                 | 6       | Donor    | Asp 190 | O                   | 1439   | Acceptor |  |
| RA6      |          | -6       | 5       | N                 | 6       | Donor    | Glu 232 | O                   | 1791   | Acceptor |  |
|          |          |          |         | O                 | 16      | Acceptor | Asn 286 | N                   | 2234   | Donor    |  |
|          |          |          |         | O                 | 18      | Acceptor | Asn 286 | N                   | 2234   | Donor    |  |
|          |          |          |         | O                 | 16      | Acceptor | Ser 285 | O                   | 2226   | Both     |  |
|          |          |          |         | O                 | 18      | Acceptor | Arg 96  | N                   | 713    | Donor    |  |
| RA7      |          | -6.9     | 3       | O                 | 25      | Acceptor | Thr 224 | O                   | 1718   | Both     |  |
|          |          |          |         | O                 | 25      | Acceptor | Arg 252 | N                   | 1954   | Donor    |  |
|          |          |          |         | O                 | 25      | Acceptor | Arg 252 | N                   | 1952   | Donor    |  |
| RA8      |          | -8.3     | 1       | O                 | 22      | Acceptor | Asp 195 | N                   | 1484   | Donor    |  |
| Stobadin |          | -6.1     | 1       | N                 | 06      | Donor    | Gly 171 | О                   | 1283   | Acceptor |  |



Figure 6: Docked photographs of novel pyridoindole derivatives (RA5, RA6 and RA7 screened by docking studies)

Comparison of docking results with pre-existing creatin kinase inhibitor- Stobadin (reference drug) On docking studies and docking analysis of stobadin (Figure 7) with the creatin kinase, interacting residues (amino acids) is found as Gly 171.



Figure 7: Docking photograph of stobadin with the creatin kinase

On docking analysis, the docked poses of RA5, RA6 and RA7 superimposes the stobadin, a pre-existing creatin kinase inhibitor which can be clearly seen in Figure 8, and the docking analysis shows that it nicely docked with protein.



Figure 8: Superimposed docking poses of RA5, RA6 and RA7 (showing with stick model) with the pre-existing ligand stobadin (showing with ball and stick model in red color)

A QSAR model has been developed against creatin kinase inhibition for screening the pyridoindole derivatives with 44 molecules as training set. This QSAR model has been statistically proven. Now, 8 novel pyridoindole derivatives has been designed and toured for the 2 tier screening. These 8 novel derivatives have passed the first screening through QSAR model, after that, all the screened derivatives gone through a second screening via docking analysis (TARGET- Creatin kinase, PDB id 3DRB). In this 2 tier screening, 3 novel designed molecules (RA5, RA6, and RA7) out of 8 have passed both the screening levels.

## Conclusion

Computational study comprises of two tier screening (QSAR and docking) of novel pyridoindole derivatives (RA5, RA6 and RA7) proved them potential creatin kinase inhibitors. Although a systemic biochemical study is necessary to confirm the findings. On comparing the chemical structure of pyridoindole derivatives with stobadin, a pre-existing creatin kinase inhibitor; it is concluded that a tricyclic fused system, consisting of pyridine and indole fused rings, which are essential pharmacophoric requirements in designing of creatin kinase inhibitors.

## **REFERENCES**

**Ajeet** (2012). Trans-disciplinary receptor binding of acyclovir to human phenylalanine hydroxylase: docking approach. *International Journal of Pharmacy and Pharmaceutical Sciences* **4**(suppl 2) 182-184. **Ajeet** (2013). In silico designing and characterization of Amiloride derivatives as ion channel modulator. *Medicinal Chemistry Research* **22**(2) 1004-1010. (DOI 10.1007/s00044-012-0096-9)

**Ajeet, Tripathi L and Kumar P (2013).** Designing of Novel 6(H)-1,3,4-Thiadiazine Derivatives as MMP12 Inhibitors: A MLR and Docking Approach. *American Journal of Pharmacological Sciences* **1**(2) 29-34. (DOI 10.12691/ajps-1-2-3)

**Casson RJ** *et al.*, (2012). Translational neuroprotection research in glaucoma: A review of definitions and principles. *Clinical & Experimental Ophthalmology* 44(4) 350-357.

**Dunnett SB** *et al.*, **(1999).** Prospects for new restorative and neuroprotective treatments in Parkinsons's disease. *Nature* **399**(6738 suppl) A32-A39.

**Hou TJ and Xu XJ (2003).** ADME Evaluation in Drug Discovery. 3. Modeling Blood-Brain Barrier Partitioning Using Simple Molecular Descriptors. *Journal of Chemical Information and Computer Sciences* **43** 2137-2152.

**Seidl SE** et al., (2011). The promise of neuroprotective agents in Parkinson's disease. Frontiers in Neurology 2 68.

**Sharma J, Ramanathan K and Rao S (2011).** Identification of Potential Inhibitors against Acetylcholinesterase Associated With Alzheimer's Diseases: A Molecular Docking Approach. *Journal of Computer-Aided Molecular Design* **1**(1) 44-51.

CIBTech Journal of Pharmaceutical Sciences ISSN: 2319–3891 (Online) An Open Access, Online International Journal Available at http://www.cibtech.org/cjps.htm 2014 Vol.3 (1) January-March, pp.12-25/Maheshwari et al.

# Research Article

Siva Kumar R, Nafeez Basha SK, Kumarnallasivan P, Vijaianand PR, and Pradeepchandran R, (2010). A computational design and docking studies on Escherichia coli b-Ketoacyl-Acyl carrier protein synthese III using auto dock. *Journal of Pharmacy Research* 3(7) 1460–1462.

**Stolc S, et al.,** (1999). Neuroprotection by the Pyridoindole Stobadine: A Minireview. *Brain research Bulletin* **42**(5) 335-340.

**Stolc S** *et al.*, (2006). Development of the new group of indole-derived neuroprotective drugs affecting oxidative stress. *Cellular and Molecular Neurobiology* **26**(7-8) 1495-1504.

**Stolc S** *et al.*, (2008). New pyridoindoles with antioxidant and neuroprotective actions. *Trends in Pharmacological Research* 118-136.

**Verma RP and Hansch C (2010).** QSAR modeling of taxane analogues against colon cancer. *European Journal Medicinal Chemistry* **45** 1470-1477.

**Yap CW (2011).** PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. *Journal of Computational Chemistry* **32**(7) 1466-1474.