INNER PRODUCT SPACE

\[A = \{ a_0 + a_1 x_1 + \cdots + a_{n-1} x_{n-1} + a_n x_n / a_i \in F \ and \ n \in N \} \]

Manohar Durge

ANC, Anandwan Warora

Author for Correspondence

ABSTRACT

This piece of work consist of \(\left(A, \oplus, \odot \right) \) is an abelian group, \(\left(A, \oplus, \otimes \right) \) is a vector space, \(A = \{ a_0 + a_1 x_1 + \cdots + a_{n-1} x_{n-1} + a_n x_n / a_i \in F \ and \ n \in N \} \), is a modified inner product space.

Keywords: Binary Operation, Abelian Group, Vector Space, Inner Product, Field.

INTRODUCTION

Herstein cites in (1)

Definition: A nonempty set of elements \(G \) is said to form a group if in \(G \) there is defined a binary operation, called the product and defined by *, such that

1. \(a, b \in G \) implies that \(a*b \in G \)
2. \(a, b, c \in G \) implies that \((a*b)*c = a * (b*c) \)
3. There exist an element \(e \in G \) such that \(a*e = e*a = a \) for all \(a \in G \)
4. For every \(a \in G \) there exist an element \(a^{-1} \in G \) such that \(a * a^{-1} = a^{-1} * a = e \)

Definition: A group \(G \) is said to be abelian (or Commutative) if for every \(a, b \in G \),

\[a * b = b * a. \]

Definition: A nonempty set \(V \) is said to be vector space over a field \(F \) if \(V \) is an abelian group under an operation which we denote by +, and if for every \(a \in F, \, v \in V \); there is defined an element, written as \(av \), in \(V \) subject to

1. \(a (v+w) = av + aw \);
2. \((a + b)v = av + bv \);
3. \(a (bv) = (ab)v \);
4. \(1v = v \);

For all \(a, b \in F; \, v, w \in V \) Where the 1 represent the unit element of \(F \) under multiplication.

Definition: The Vector Space \(V \) over \(F \) is said to be an inner product space if there is defined for any two vectors \(x, y \in V \) an element \((x, y) \) in \(F \) such that

1. \((x, y) = (y, x)^\top, \forall x, y \in V \)
2. \((x, x) \geq 0 \) and \((x, x) = 0 \ if \ f x = 0 \)
3. \((c_1 x + c_2 y, z) = c_1 (x, z) + c_2 (y, z), \forall c_1, c_2 \in F \ & \ x, y, z \in V \)

DISCUSSION

Let \(A = \{ a_0 + a_1 x_1 + \cdots + a_{n-1} x_{n-1} + a_n x_n / a_i \in F \ and \ n \in N \} \) and

Let \(x = a_0 + a_1 x_1 + \cdots + a_{n-1} x_{n-1} + a_n x_n, a_i \in F \ and \ n \in N, \)

\[y = b_0 + b_1 x_1 + \cdots + b_{n-1} x_{n-1} + b_n x_n, b_i \in F \ and \ n \in N, \]

\[z = c_0 + c_1 x_1 + \cdots + c_{n-1} x_{n-1} + c_n x_n, c_i \in F \ and \ n \in N, \]

\[-x = (-a_0) + (-a_1) x_1 + \cdots + (-a_{n-1}) x_{n-1} + (-a_n) x_n, a_i \in F \ and \ n \in N \]

\[O = 0 + 0 x_1 + \cdots + 0 x_{n-1} + 0 x_n \]
Research Article

1 = 1 + 0x_1 + \cdots + 0x_{n-1} + 0x_n

\[cx = (ca_0) + (ca_1)x_1 + \cdots + (ca_{n-1})x_{n-1} + (ca_n)x_n, \ c \in F \]

\[x = y \text{ iff } a_i = b_i, \ \forall \ i \]

Now we define first binary operation \(\oplus \) on \(A \) as

\[x \oplus y = (a_0 + a_1x_1 + \cdots + a_{n-1}x_{n-1} + a_nx_n) \oplus (b_0 + b_1x_1 + \cdots + b_{n-1}x_{n-1} + b_nx_n) \]

\[= (a_0 + b_0) + (a_1 + b_1)x_1 + \cdots + (a_{n-1} + b_{n-1})x_{n-1} + (a_n + b_n)x_n \]

\[\text{........... (1)} \]

\[\Rightarrow \ x \oplus y = y \oplus x, \forall \ x, y, \in A \]

\[x \oplus (y \oplus z) = (x \oplus y) \oplus z, \forall \ x, y, z \in A \]

\[0 \oplus x = x \oplus 0, \forall \ x \in A \]

\[x \oplus (-x) = (-x) \oplus x = 0, \forall \ x \in A \]

\((A, \oplus)\) is an abelian group. \text{........... (2)}

Now we define second binary operation \(\otimes \) on \(A \) as

\[c \otimes x = cx, \forall \ c \in F \ \& \ x \in A \text{ (3)} \]

\[\Rightarrow c \otimes (x \oplus y) = (c \otimes x) \oplus (c \otimes y), \forall \ c \in F \ \& \ x, y \in A \]

\[(c_1 \otimes c_2) \otimes x = (c_1 \otimes x) \oplus (c_2 \otimes x), \forall \ c_1, c_2 \in F \ \& \ x \in A \]

\[c_1 \otimes (c_2 \otimes x) = (c_1 \otimes c_2) \otimes x, \forall \ c_1, c_2 \in F \ \& \ x \in A \]

\[1 \otimes x = x, \forall \ x \in A \]

\[\Rightarrow (A, \oplus, \otimes) \text{ is a vector space. (4)} \]

Now we define inner product on \(A \) as

\[(x, y) = (a_0 + a_1x_1 + \cdots + a_{n-1}x_{n-1} + a_nx_n) (b_0 + b_1x_1 + \cdots + b_{n-1}x_{n-1} + b_nx_n) \in F \]

\[\Rightarrow (x, y) = (y, x), \forall \ x, y \in A \]

\[(x, x) \geq 0 \text{ and } (x, x) = 0 \iff x = 0 \text{ or } \sum a_i = 0 \]

\[(c_1x \oplus c_2y, z) = c_1(x, z) + c_2(y, z), \forall c_1, c_2 \in F \ \& \ x, y, z \in A \]

\[\text{........... (5)} \]

From (1) to (5) we come to the Conclusion that

\(A = \{ a_0 + a_1x_1 + \cdots + a_{n-1}x_{n-1} + a_nx_n \ \mid \ a_i \in F \ \& \ n \in N \} \), is a modified inner product space.
Research Article

Conclusion

From the above discussion, I come to the following conclusions

\((A, \oplus)\) is an abelian group. \((A, \oplus, \otimes)\) is a vector space.

\[A = \{ a_0 + a_1 x_1 + \cdots + a_{n-1} x_{n-1} + a_n x_n / a_i \in F \text{ and } n \in N \}, \]

is a modified inner product space.

REFERENCES