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ABSTRACT 

In this paper we introduce and compare Chrip Fourier transforms and fractional Fourier transforms. At 

first we review different ways to model Chrip signals. We know that the Chrip signal is a signal whose 

momentary frequency change with time and it in fact doesn’t have the short comings of classic frequency 

transforms like Fourier. At the end, a new and effective way to model a hypothetical Chrip signal will be 
presented. 
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INTRODUCTION 

Classical methods of signal analysis take place in two time or frequency states, as these methods provide 
no information about the frequency changes over time or time dispersion of a particular frequency in a 

signal (Yali et al., 2009), they are not suited to analyze non-static signals like Chrip signals. In a Chrip 

signal there is information about how frequency changes over time, so in this article we are looking for 
ways to improve Chrip signal processing by using this information.  

Chrip signal was first introduced by Mr. Klader et al., in the Bell Telephone Laboratory for radar use in 

1960. The Chrip signals have extensively applications in areas such as radar and sonarray ultrasound 
systems (Engen and Yngvar, 2011).  

The main aim: to optimize previous methods based on Chrip signal and to introduce a new transform on 
the basis of Chrip signal which can be used to process the Chrip signal in the optimization area. The 

concept of Pulse compression is used in order to have a simultaneous long range and good resolution.  

Introduction and Characterization of the Chrip Signal 

A. Simple Chrip Model 

The ability of the radars for perfect differentiation is due e wide bandwidth frequency of these systems. 

From the topic of Fourier transform we know that a pulse with a constant range and carrier frequency has 

a narrow bandwidth and low differentiation limits.  

However, in the spectrum of these signals, a signal with wide bandwidth and a long time interval can be 

obtained using the Frequency Modulation (FM). 
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Where 𝑘 represents Chriprate and 𝑓, the momentary frequency. 
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B. Ambiguity Function 

This function is a very useful and significant tool in radar and sonarray signal processing. This function 

can be very useful in comparing different signals by their resolutions. Ambiguity function can be 
expressed as a time response filter for the signal that has time lag and frequency displacement.  

Individual ambiguity function:    

( , ) ( ) ( )exp( 2 )X u t u t j t dt   





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Reciprocal ambiguity function:   

( , ) ( ) ( )exp( 2 )AF s t r t j t dt   
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1. Introduction of the important features of the ambiguity function: 

Maximum value:   

( , ) (0,0) 1X X   
      (6) 

Constant value:  
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Symmetry with respect to the origin: 

( , ) ( , )X X     
      (8) 

Effect of linear modulation frequency:  
2( )exp( ) ( , )u t j kt X k    

     (9) 

C. Analysis of the Signal Using the Ambiguity Function 

In radar and sonarray systems, the choice of waveform and its parameters has a large impact on the 

system performance, including the determination range and resolution of the system, and one of the most 
important and most basic design stages is the selection of the sending waveform. In this section, we study 

different waveforms using the ambiguity function and calculate the range with the help of the time axis 

and the speed with the help of Doppler shift. 

Rectangular Pulse wave form 

Rectangular Pulse form is one of the simplest wave forms to be used is known as the single-frequency 

wave form. The smaller the width of the pulse, the greater there solution. In the following figures, the 

figure resulted from a cut on the time lag axis of the ambiguity function is the pulse autocorrelation 
function, the width of which represents the timing precision or resolution of the range; and the width of 

the pulse figure resulted from a cut on the Doppler axis represents the resolution for the Doppler. 

 

 
Figure1: The ambiguity function of the rectangular pulse wave form 
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Chrip Wave Form 

As shown in the figures, we come to the conclusion that the time resolution of the Chrip pulse has 

improved in comparison with the single-frequency pulse.  

 

 
Figure 2: LFM wave form ambiguity function 

 

The display of the linear Chrip signal in the time domain is as follows:  

 

 
Figure 3: The display of the linear Chrip signal in the time domain 

 

 
Figure 4: The display of the Chrip frequency time 

 

Chrip signal Fourier transform is shown below: 
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Figure 5: The display in different frequency domains with varying Ds; increasing D gets us closer to 

the desired range 
 

The Introduction of New Transforms in Chrip Signal Processing 

Here we introduce three new transforms in Chrip signal processing: FRFT, Fourier Chrip transform, CFT 

Wigner Chrip transform WFT. These three transforms are powerful tools that are used in the recent years’ 
signal processing. The Fourier fractional transform and the Fourier Chrip transform are generalized 

conventional Fourier transforms and Wigner Chrip transform is the generalized Wigner transform.  

A. Fractional Fourier Transform 

Fractional Fourier transform is more flexible in processing non-constant signals in comparison with the 
ordinary Fourier transform, due to having a degree of freedom and therefore is widely used in filtering, 

revealing and estimating the parameters of the linear Chrip signal. The transform is unitary and is very 

efficient in Chrip transform signal processing. The transform appears with a low rank and little abrupt 
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changes and has relatively low computational load. Chrip’s constant rate is needed to calculate the 

transform. Fractional Fourier transform is independent from the frequency information and has high 

accuracy in estimating the Chrip signal range and very low error as to zero. It can be considered linear. It 
can be considered as linear. The original formulation of the fractional Fourier transform is as follows 

(Diego et al., 2012): 
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( / 2)p           (14) 

Where p is the transform rate, α is the transform angle, K is the core of FRFT from a kernel function. 

Some of the properties of FRFT are as follows:  

1. The transformation is linear 

2. The turns are zero, 
0 1F   

3. Compatibility with conventional Fourier transform,  
1F F  

4. The addition in turns, .P Q p qF F F   

5. Alternation with period 4, 
4P PF F   

6. Parseval’s theorem for any given α:  
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7. Reverse ( ) ( ) ( , )x t X u k u t du 
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   
The relationship between FRFT and Wigner distribution and ambiguity function:  

Wigner distribution and ambiguity function are of the most important tools in the analysis of time and 
frequency such that they are frequently used in radar applications and quantum mechanics. Below after 

the introduction of Wigner distribution and ambiguity function, its relationship with the fractional Fourier 

transform is presented. Wigner distribution signal ( )X t is defined as follows:  
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Wigner distribution is described as the signal power distribution in the frequency time plate and it is 

shown that the image of this distribution on the time and frequency axes respectively represents the 

signal’s square size of frequency distribution and the square size of time distribution: 
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The relationship between the ambiguity function and the fractional Wigner Fourier transform distribution:  

   , cos sin , sin cosx xW u v W u v u v         , cos sin , sin cosx xA v W r r        
    (20) 

For example, if the frequency signal is displayed as figure a, the fractional Fourier transform with the 

proper angle can display the frequency time as a figure. 

Schematic display of the FRFT effect on the Wigner distribution  

 

 
 Figure 6: The display of the momentary frequency of the Chrip signal by time 

 

B. Wigner Chrip Transform 

Wigner Chrip transform is more complete than the previous transforms and can be used for non-linear 

Chrip signal processing whose momentarily frequency coefficients of a polynomial time changes by time 

(Osama et al., 2012). To process signals whose momentary frequencies can change by time like a 
polynomial, but its implementation is heavier and is defined as follows (Liu et al., 2013):  
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 ( )x t is a signal on which the transformation is going to be done, 𝑓 is the variable for frequency, 𝑡 the 

variable for time, 𝜏 time lag and 𝑁 Chrip signal level. ( )C t is the extraction sequence (Durak and 

Aldirmaz, 2010): 
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This transform similar to the fractional Fourier transform has high accuracy for estimating the Chrip 

signal range and is a double linear transform and in case of the signals being multi-components, we we’ll 
have conflict terms (Tao et al., 2007) and that is why we should improve the transform in a way to 

minimize the effect of these conflicts (Osama et al., 2012). Wigner Chrip transform contains a large set of 

signals and can be even suited for signals whose Chrip rate and parameters change over time and it has 
little error, but heavier implementation in comparison with the fractional Fourier (Diego et al., 2012).  
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C. A New Approach: Fourier Chrip Transform 

Signal representation using the Fourier Chrip transform is as follows:  
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Where we have: 

 

2

0 20 30

3 4 5

40 50 60

30 ; 15 / ; 20 /

10 / ; 5 / ; 3 /

f Hz c Hz s c Hz s

c Hz s c Hz s c Hz s

  

  
     (24) 

Also the following equation calculates the error in reconstructing the signal, where ( )
i

x t is the original 

signal,  r
x t the reconstructed signal and Nrestored and the rate of the signal (Pei and Ding, 2010).  
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i r
Error x t x t

N
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       (25) 
 

 
Figure 7: The display of time frequency Chrip 

 

IV. Computer Simultion 

Here we present the results of computer simulations by the MATLAB software. First we reconstruct the 
signal using the Fourier Chrip method.  

 
Figure 8: The display of the frequency time signal by Fourier Chrip method 
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Figure 9: The display of the frequency time signal by Wigner Chrip method 

 

As can be seen, the Fourier Chrip signal has easily and with no errors tracked and displayed the time 
related changes. The Wigner Chrip transform has some errors in comparison with the Fourier Chrip 

transform.  

 

 
Figure 10: The comparison of error in two methods of Chrip Fourier and Chrip Wigner at 

different Chrip signal rates 

 
We can see that in this case the errors are small compared to the Fourier Chrip. Similarly, we see that in 

the Fourier Chrip we have zero error which is highly desirable but little error in Wigner Chrip. 

 

CONCLUSIONS 
According to the simulation results in MATLAB software we can see that the Fourier Chrip methods 

reconstruct the Chrip signal with higher resolution than the Chrip Wigner method and track its frequency 

path. Error calculating curves for the Chrip signal rate also indicative better performance of Chrip Fourier 
method due to its low rate of error.  
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