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ABSTRACT 

The aim of present work was to study a class of Labelled Oriented Graph (LOG) group for which the 

underlying graph is a circuit with vertex set Vand edge set E. The relationship between the LOG group 

and the cyclically presented group was investigated. The obtained results indicated the hyperbolicity of 

the cyclically presented group implied the solvability of the conjugacy problem for the LOG group. In the 

vertices in the circuit, the LOGs and cyclically presented groups coincided by the generalized Fibonacci 

groups. The small cancellation and curvature methods have been used for hyperbolicity, automaticity, and 

solvability of decision problems. 
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INTRODUCTION 

A Labelled Oriented Graph (LOG) consists of a finite connected graph equipped with loops, vertexes and 

multiple edges (Szczepan and Vesnin, 2001; Gilbert and Howie, 1995; Howie and Williams, 2012). The 

vertex set is V and E is the edge set. The initial vertex map, terminal vertex map and labelling map are 

defined as ι, τ and λ. The LOG determines a corresponding LOG presentation as follows (Szczepan and 
Vesnin, 2001): 

1( ) ( ) ( ) ( ),K V e e e e E      
        

(1) 

The Fibonacci group Gn(m,k) is defined as follows (Bardakov and Vesnin, 2003; Cavicchioli et al., 2008; 

Edjvet and Howie, 2008):  

1( , ) ,...., : ( 1,..., )n n i i m i kG m k x x x x x i n           (2) 

Where 0 , ( , , ) 1m k n n m k    . 

The cyclically presented group Gn (W) is defined as follows (Johnsonet al., 1999; Sela, 1999; Bogopolski 

et al., 2010; Kasaeipoor et al., 2015; Maghsoudi et al., 2012; Dahmani and Guirardel, 2011; Cavicchioli 

et al., 1998): 

1

1( ) ,..., , ( ),... ( )n

n nG w x x w w w           (3) 

The natural extension of Gn(w) is defined as follows: 

' 1( ) ( ), ( ), ( )n n nG w G w t t gt g g G w   
 

        (4) 

Theorem 1: 
' ( )nG w  is defined as follows: 

' 1 2 1( ) , ( , ),( , ) , ( , ) ( ,cac ,..., )n n n

nG w a c W a c a c W a c w ac c ac     
 

     (5) 

Proof 1: By applying K(n,t) for equivalence complex: 

1 1 1 1 1, , , ,t t t n n tK a b c a ca b c bc a c ac b          1 1 1, , , ,t t n na b c a ca b c bc a c ac a        

1 1 1 1, , , ,t t n na b c a ca b c a c a c ac a        1 1 1, , .t t n na c c a cac a c ac a         (6) 

The Groups 
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The LOG presentation is given as follows: 

1 1

1 1
1 1

0 0

( ) ( ) , ,i i i i

r r
p p p p n

i i

ac c ac a a c 

 
  

 

          (7) 

By consideration the isomorphic to the natural HNN extension: 

0 1 1 0 1 1

1

1 2(( 1.... ( 1) )( ...x ) )
r r rn p p p p r p p p rG x x x r x x x
 



            (8) 

The presentation of the LOG group is given as follows:  

0 1 0

1

1 1 1 1( ,..., ) ( ...( 1) )( ... )
r rn p p p r p pw x x x x r x x x r 

            (9) 

where 

0 1

'

1 1 1( ,..., ) ( 1)
rn p p pw x x x x x r              (10) 

Therefore: 
( )1 2 2 3 1 ' 1 2 2 3 1( , ,c ,..., ) ( , ,c ,..., ) r rp r p rn n n nw ac cac ac c ac w ac cac ac c ac c ac

            . 

' 2 2 3 3 4 ( 1) 1(c , ,c ,..., )n nw ac c ac ac c ac     
=

1 ( 1)' 1 2 2 3 1( , ,c ,..., ) r rp r p rn nw ac cac ac c ac c ac
        

.
' 1 2 2 3 1 1 1( , ,c ,..., )n nw ac cac ac c ac c       .       (11) 

Cyclically Presented Groups 

By consideration the cyclically presented group in the form of: 

, ( , ), , na c U a c a c  
           (12) 

1 2

1 1 11 1 1 1 ...( ,..., ) .... k

knw x x x x x
 

                (13) 

Lemma 1: The n, t are the non-negative integers that n > t. For 0 < s < n and t≡ (t-1)s modulo n. The 

groups of G(n,t) and G(n,s) are isomorphic.  

For n>1, the group G(n,1) is trivial. For n>0, the group G(b,0) is cyclic of order 2n-1. For α>0, the group 

(2k, k+1) is cyclic of order 2k+1. 

G (2t-1, t) ≡ G(2t-1,2t-2) ≡ F(2,2t-1)        (14) 

H2(X) is infinite cyclic, generated by the class of the relator [a, cn]. H1(X) is infinite cyclic generated by 

the class of the generator c. In the group a, c | [a, cn],the element cnis central and [U, cn] = 1 is a relator. 

Moreover, [a, cn]+1was more than [a, cn]−1.  

For the circuit sample with vertex set Vand edge set E, the 
1 1: ( ) ( )x x    is the map of 1( )x . 

The subgroup of homotopy group is given as follows: 
1

1( ) ( ), ,...,j j n nx j x j w w

 
        

 (15)  

By consideration the 2 1: ( ) ( )s Z X  of Zπ1(x), the Hurewicz isomorphism theorem implies that 

2 2 2( ) H (X) C ( )X x   .          (16) 

The Conjugacy Problem 

The conjugacy problem in the natural HNN extension ( ) ( )n nG w G w    via the twisted conjugacy 

problem in Gn(w). 

Theorem: G is a finitely generated hyperbolic group and φ ∈Aut(G) has finite order. The φ-twisted 

conjugacy problem in G is solvable. The conjugacy problem is solvable for hyperbolic groups. Φ has 

finite order and G is finitely generated. δis the hyperbolicity constant for the and geodesic quadrilaterals 

are 2δ-slim. By usingφ to each edge of γ gives a geodesic segment φ(γ) from 1 to φ(g).G is hyperbolic and 

φ ∈Aut(G) has finite order then the conjugacy problem for G ×φ Z is solvable. The cyclically presented 

group Gn(w) is hyperbolic and the conjugacy problem for HNN extensionG n(w) is solvable. 

Proof: t is a generator of Z which G×φZ has elements gtmwith g ∈G, m ∈Z. Two elements utp, vtq∈G×φZ 

are conjugate. gtm∈G ×φ Z which (utp)(gtm) = (gtm)(vtq); g ∈G, m ∈Z which (uφp(g))t p+m= (gφm(v))tm+q; g 

∈G, m ∈Z. uφp(g) = gφm(v); m ∈Z whichu ∼φpφm(v).The conjugacy problem is solvable in G×φZ.  

Cancellation Conditions 
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By consideration the small cancellation conditions for the presentations Hn(m,k), the strongest C(p) 

condition that Hn(m,k) can satisfy is C(4). The prepared condition is considered for triangular 

presentations.  

The group Hn(m,k) has solvable and conjugacy problems and is automatic. Hn(m,k) is non-elementary 

hyperbolic and the class of groups Hn(m,k) has solvable isomorphism problem. Moreover, the natural 

HNN Hn(m,k) has solvable conjugacy problem. Therefore, Hn(m,k) acts freely on a finite-dimensional 

contractible complex.  

Proof. In order to prove that H(n, 3)is hyperbolic. It is necessary to indicate that it has a linear 

isoperimetric function as f:N→N which for all N ∈N and all freely reduced words w ∈Fnwith length at 

most N that represent the identity of H(n, 3).The minimum number of 2-cells in a reduced via the 

presented diagram over H(n, 3)with boundary of w. The boundary of diagram is a simple closed curve. 

Note that each 2-cell in a diagram over H(n, 3)is a triangle. The corners of vertices each have angle 70˚. 

 

CONCLUSION  

In the present study, hyperbolicity of the cyclically presented group implies the solvability of the 

conjugacy problem for the LOG group. The small cancellation and curvature methods have been used to 

obtain results on hyperbolicity, and solvability of problems. The obtained results are in good agreement 

with Fibonacci group that is cyclically present group with infinite structure.  
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