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ABSTRACT 

Some important methods for solving constrained fuzzy optimization problems replace the original problem 

by a sequence of sub-problems in which the constraints are represented by terms added to the objective 

function. In this paper, we describe one approach of this type for solving a class of nonlinear fuzzy 

optimization problems. The fuzzy quadratic penalty method adds a multiple of the square of the violation 

of each constraint to the objective function. The penalty terms for the constraint violations are multiplied 

by a positive coefficient. By making this coefficient larger, we penalize constraint violations more severely, 

thereby forcing the minimizer of the penalty function closer to the feasible region for the constrained 

problem. We described the quadratic fuzzy penalty method and investigate convergence of this method. 

 

Keywords: Fuzzy Penalty Method, Fuzzy Nonlinear Optimization, Fuzzy Triangular Numbers. 

 

INTRODUCTION 

In real programming, the coefficients of the problems are evermore treated as deterministic values. 

However, ambiguity evermore exits in practical engineering problems. Therefore, fuzzy and stochastic 

approaches are generally used to illustrate the imprecise characteristics. In stochastic optimization the 

uncertain coefficients are regarded as random variables and their probability distributions are assumed to 

be known e.g. (Charnes and Cooper, 1959; Kall,1982; Liu et al., 2003; Cho and Gyeong, 2005). In fuzzy 

optimization the constraints and objective functions are viewed as fuzzy sets and their membership 

functions need to be known. E.g. (Slowinski, 1986; Delgado et al., 1989; Luhandjula, 1989; Liu and 

Iwamura, 2001). In these methods, the membership functions and probability distributions play important 

roles. However, it is often difficult to specify an appropriate membership function or accurate probability 

distribution in an unclear environment. 

Fuzzy set theory has been applied to many disciplines such as control theory and operational research, 

mathematical modeling and industrial applications. Tanaka, et al., (1974) first proposed the concept of 

fuzzy optimization on general level. Zimmerman, (1978) proposed the first formatting of fuzzy linear 

programming. Kumar and Kaur, (2010) and Kheirfam, (2011) introduced an optimal solution of fuzzy 

nonlinear programming problems. In their works, they have taken all coefficients and decision variables to 

be fuzzy numbers and all the constraints to be linear. Behara and Nayak, (2012) have developed KKT 

conditions for solving fuzzy nonlinear programming problems with continuous and differentiable objective 

function and constraints. Jamison and Lodwic, (2001) have solved fuzzy linear programming using a 

penalty method. Nevertheless, they used membership degrees as levels of possibility. Penalty function 

method for solving fuzzy nonlinear programming problem was proposed by Jameel and Radhi, (2014). In 

their work, the penalty function method has been developed and   mixed with Nelder and Mend’s algorithm 

of direct optimization problem.  Solution have been used together to solve fuzzy nonlinear programming 

problem. 

In this paper, we focus on solving fuzzy nonlinear optimization problems by using the quadratic fuzzy 

penalty method. We take all coefficients of the objective function and constraints to be triangular fuzzy 

numbers. The quadratic fuzzy penalty method adds a multiple of the square of the violation of each 

constraint to the objective function. Because of its simplicity and intuitive appeal, this approach is used 

often in practice. 
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This paper is organized as follows: in section 2, some basic definitions and arithmetic operations of 

triangular fuzzy numbers are reviewed. In addition, fuzzy-value function with its continuity and 

differentiability is described. In section 3, formulations of fuzzy nonlinear programming problems are 

discussed. In section 5, the quadratic fuzzy penalty method is proposed. In section 6, the convergence of 

this approach is described. In section 7, to demonstrate the effectiveness of the proposed method, some 

examples are solved. The conclusion appears in last section. 

 

Preliminaries  

Definition 2.1 (Pathak and Pirzada, 2011) Suppose that R be the set of real numbers and 𝑎̃: 𝑅 →
[0,1]be a fuzzy set. If 𝑎̃ satisfies the following properties, then we say that 𝑎̃is a fuzzy number. 

(i) 𝑎̃is normal, that is, there exists 𝑥0 ∈ 𝑅 such that 𝑎̃(𝑥0) = 1. 
(ii) 𝑎̃is fuzzy convex, that is,   

𝑎̃(𝑡𝑥 + (1 − 𝑡)𝑦) ≥ 𝑚𝑖𝑛{𝑎̃(𝑥), 𝑎̃(𝑦)} ;       ∀ 𝑥, 𝑦 ∈ 𝑅 , 𝑡 ∈ [0,1]. 
(iii) 𝑎̃ is upper semi continuous on R, that is,{𝑥|𝑎̃(𝑥) ≥ 𝛼} is a closed subset of R for each 𝛼 ∈
[0,1]. 
(iv) 𝑐𝑙{𝑥 ∈ 𝑅|𝑎̃(𝑥) > 0}Forms a compact set. 

 

For all𝛼 ∈ (0,1], 𝛼-level set,ãα, of any 𝑎̃ ∈ 𝐹(𝑅)is defined as ãα = {x ∈ R|ã(x) ≥ α}.  Where, F(R) 

denotes the set of all fuzzy numbers on R. The 0-level set ã0 is defined as the closure of the 

set{x ∈ R|ã(x) > 0}.  

By definition of fuzzy numbers, it has been proved that, for any𝑎̃ ∈ 𝐹(𝑅) and for each 𝛼 ∈ (0,1], ãαis 

compact convex subset of R, and we writeãα = [𝑎̃𝛼
𝐿 , 𝑎̃𝛼

𝑈]. 
Definition 2.2 (Jamison and Lodwick, 2001) According to Zadeh’s extension principle, addition and scalar 

multiplications of two fuzzy numbers 𝑎̃and 𝑏̃by their α-cuts are defined as follows: 

(𝑎̃⨁𝑏̃)𝛼 = [𝑎̃𝛼
𝐿 + 𝑏̃𝛼

𝐿 , 𝑎̃𝛼
𝑈 + 𝑏̃𝛼

𝑈], 

(𝜇⨂𝑎̃)𝛼 = [𝜇𝑎̃𝛼
𝐿 , 𝜇𝑎̃𝛼

𝑈]. 
Definition 2.3 (Pathak and Pirzada, 2011) Suppose that𝑎̃ 𝑎𝑛𝑑 𝑏̃ are two fuzzy numbers. If the fuzzy number 

𝑐̃ exists such that 𝑐̃⨁𝑏̃ = 𝑎̃ then we say that 𝑐̃ is Hukuhara difference of  𝑎̃ , 𝑏̃ and denoted by 𝑐̃ = 𝑎̃⦵𝐻𝑏̃. 

We define difference of 𝑎̃ 𝑎𝑛𝑑 𝑏̃by their α-cuts by use of H-difference as follows: 

(𝑎̃ − 𝑏̃)𝛼=ãα⦵𝐻𝑏̃α = [𝑎̃𝛼
𝐿 − 𝑏̃𝛼

𝐿 , 𝑎̃𝛼
𝑈 − 𝑏̃𝛼

𝑈], 

where𝑎̃, 𝑏̃ ∈ 𝐹(𝑅), 𝜇 ∈ 𝑅 and  𝛼 ∈ [0,1]. 
Proposition 2.4 (Pathak and Pirzada, 2011) Let𝑎̃ ∈ 𝐹(𝑅), we have 

(i) ãα
L  is bounded left continuous nondecreasing function on (0,1]; 

(ii) ãα
U is bounded left continuous nonincreasing function on (0,1]; 

(iii) ãα
L  and ãα

Uare right continuous at 𝛼 = 0; 
(iv) ãα

L ≤ ãα
U. 

In addition, if the pair of functions ãα
Land ãα

U satisfy the conditions (i)-(iv), then there exists a unique𝑎̃ ∈
𝐹(𝑅) such that for all 𝛼 ∈ [0,1]  we have ãα = [𝑎̃𝛼

𝐿 , 𝑎̃𝛼
𝑈]. 

Here, we define a partial order relation on fuzzy number space. 

Definition 2.5 (Pathak and Pirzada, 2011) Let 𝑎̃, 𝑏̃ ∈ 𝐹(𝑅)and ãα = [𝑎̃𝛼
𝐿 , 𝑎̃𝛼

𝑈] , b̃α = [𝑏̃𝛼
𝐿 , 𝑏̃𝛼

𝑈] be two closed 

intervals in R, for all 𝛼 ∈ [0,1], we define 

(i) 𝑎̃ ⪯ 𝑏̃  ⇔  𝑎̃𝛼
𝐿 ≤ 𝑏̃𝛼

𝐿 , 𝑎̃𝛼
𝑈 ≤ 𝑏̃𝛼

𝑈. 

(ii) 𝑎̃ ≺ 𝑏̃ if and only if for all 𝛼 ∈ [0,1]: 

{
𝑎̃𝛼

𝐿 < 𝑏̃𝛼
𝐿

𝑎̃𝛼
𝑈 < 𝑏̃𝛼

𝑈
or{

𝑎̃𝛼
𝐿 ≤ 𝑏̃𝛼

𝐿

𝑎̃𝛼
𝑈 < 𝑏̃𝛼

𝑈
or{

𝑎̃𝛼
𝐿 < 𝑏̃𝛼

𝐿

𝑎̃𝛼
𝑈 ≤ 𝑏̃𝛼

𝑈
. 

Definition 2.6 (Saito and Ishii, 2001) Let 𝑎̃ ∈ 𝐹(𝑅) be a triangular fuzzy number then ithas membership 

function as below: 
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𝜇𝑎̃(𝑟) = {

𝑟 − 𝑎

𝑏 − 𝑎
,          𝑖𝑓  𝑎 ≤ 𝑟 ≤ 𝑏,

𝑐 − 𝑟

𝑐 − 𝑏
, 𝑖𝑓   𝑏 < 𝑟 ≤ 𝑐

 

which is denoted by𝑎̃ = (𝑎, 𝑏, 𝑐) and the α-level set of 𝑎̃is:  

𝑎̃𝛼 = [(1 − 𝛼)𝑎 + 𝛼𝑏, (1 − 𝛼)𝑐 + 𝛼𝑏]. 
Definition 2.7 (Pirzada and Pathak, 2013) Suppose that V be a real vector space and F(R) be the set 

of all fuzzy numbers. 

Then a function𝑓: 𝑉 → 𝐹(𝑅)is called fuzzy-valued function defined on V. Corresponding to such a function 

𝑓and 𝛼 ∈ [0,1], we define two real-valued functions𝑓𝛼
𝐿 and 𝑓𝛼

𝑈on V as𝑓𝛼
𝑈(𝑥) = (𝑓(𝑥))𝛼

𝑈 and 𝑓𝛼
𝐿(𝑥) =

(𝑓(𝑥))𝛼
𝐿 for all 𝑥 ∈ 𝑉. 

Definition 2.8 (Diamond and Kloeden, 1994) Let𝑓: 𝑅𝑛 → 𝐹(𝑅) be a fuzzy-valued function. We say that 𝑓 

is continuous at𝑐 ∈ 𝑅𝑛if for every 𝜀 > 0, there exists a 𝛿 = 𝛿(𝑐, 𝜀) > 0such that: 

𝑑𝐹(𝑓(𝑥), 𝑓(𝑐)) < 𝜀 for all𝑥 ∈ 𝑅𝑛 with ‖𝑥 − 𝑐‖ < 𝛿. That is, 

lim
𝑥→𝑐

𝑓(𝑥) = 𝑓(𝑐), 

where𝑑𝐹(𝑎̃, 𝑏̃) = 𝑠𝑢𝑝0≤𝛼≤1 𝑚𝑎𝑥{|𝑎̃𝛼
𝐿 − 𝑏̃𝛼

𝐿|, |𝑎̃𝛼
𝑈 − 𝑏̃𝛼

𝑈|}  for all 𝑎̃, 𝑏̃ ∈ 𝐹(𝑅), is the metric on 𝐹(𝑅). 

Proposition 2.9 Let𝑓: 𝑅𝑛 → 𝐹(𝑅) be a fuzzy-valued function. If 𝑓 is continuous at 𝑐 ∈ 𝑅𝑛 then 𝑓𝛼
𝐿(𝑥) and 

𝑓𝛼
𝑈(𝑥)are continuous at 𝑐 for all 𝛼 ∈ [0,1]. 

Definition 2.10 Let X be a subset of R. A fuzzy-valued function 𝑓: 𝑋 → 𝐹(𝑅)is said to be H-differentiable 

at𝑥0 ∈ 𝑋 if there exists a fuzzy number 𝐷𝑓(𝑥0)such that the limits (with respect to metric 𝑑𝐹 ) 

𝑙𝑖𝑚
ℎ→0+

1

ℎ
⨀[𝑓(𝑥0 + ℎ)⦵𝐻𝑓(𝑥0)] 𝑎𝑛𝑑 𝑙𝑖𝑚

ℎ→0+

1

ℎ
⊙ [𝑓(𝑥0)⦵𝐻𝑓(𝑥0 − ℎ)] 

both exist and are equal to 𝐷𝑓(𝑥0). In this case, 𝐷𝑓(𝑥0)is called the H-derivative of 𝑓 at 𝑥0. If 𝑓 is H-

differentiable at any 𝑥 ∈ 𝑋, we call𝑓 is H-differentiable over X. 

Proposition 2.11 Let X be a subset of R. If a fuzzy-valued function 𝑓: 𝑋 → 𝐹(𝑅) isH-differentiable at 𝑥0 ∈
𝑋  with H-derivative 𝐷𝑓(𝑥0), then 𝑓𝛼

𝐿(𝑥) and 𝑓𝛼
𝑈(𝑥) are differentiable at 𝑥0, for all 𝛼 ∈ [0,1]. Moreover, 

we have 

(𝐷𝑓)
𝛼

(𝑥0) = [𝐷(𝑓𝛼
𝐿)(𝑥0), 𝐷(𝑓𝛼

𝑈)(𝑥0)]. 

Definition 2.12 (Zimmermann, 1978) Let𝑓be a fuzzy-valued function defined on an open subset X of 𝑅𝑛 

and let 𝑥0 = (𝑥1
0, 𝑥2

0, … , 𝑥𝑛
0) ∈ 𝑋 be fixed. We say that𝑓 has the 𝑖𝑡ℎpartial H-derivative at 𝑥0if the       fuzzy-

valued function𝑔̃(𝑥𝑖) = 𝑓(𝑥1
0, … , 𝑥𝑖−1

0 , 𝑥𝑖 , 𝑥𝑖+1
0 , … , 𝑥𝑛

0) is H-differentiable at 𝑥0withH-

derivative𝐷𝑖𝑓(𝑥0).We also write 𝐷𝑖𝑓(𝑥0)as (
𝜕𝑓̃

𝜕𝑥𝑖
)(𝑥0). 

Definition 2.13 We say that 𝑓 is H-differentiable at 𝑥0 ∈ 𝑋 ⊆ 𝑅𝑛 if one of the partial H-derivatives
𝜕𝑓̃

𝜕𝑥𝑖
; 𝑖 =

1, … , 𝑛, exists at 𝑥0 and the remaining n-1 partial H-derivatives exist on some neighborhoods of 𝑥0 and are 

continuous at 𝑥0. The gradient of 𝑓 at 𝑥0 is denoted by 

∇𝑓(𝑥0) = (𝐷1𝑓(𝑥0), … , 𝐷𝑛𝑓(𝑥0)). 

The 𝛼-level set of ∇𝑓(𝑥0) is defined and denoted by 

(∇𝑓(𝑥0))𝛼 = ((𝐷1𝑓(𝑥0))
𝛼

, … , (𝐷𝑛𝑓(𝑥0))
𝛼

), for all 𝛼 ∈ [0,1]. 

where (𝐷𝑖𝑓(𝑥0))𝛼 = [𝐷𝑖𝑓𝛼
𝐿(𝑥0), 𝐷𝑖𝑓𝛼

𝑈(𝑥0)] , 𝑖 = 1, … , 𝑛. 

Proposition 2.14 Let 𝑋 ∈ 𝑅𝑛 be an open subset. If fuzzy-valued function 𝑓: 𝑋 → 𝐹(𝑅)is H-differentiable 

on 𝑋 then 𝑓𝛼
𝐿(𝑥) and 𝑓𝛼

𝑈(𝑥) are differentiable on 𝑋 for all 𝛼 ∈ [0,1]. Moreover for each 𝑥̅ ∈ 𝑋, 

(𝐷𝑖𝑓(𝑥̅))𝛼 = [𝐷𝑖𝑓𝛼
𝐿(𝑥̅), 𝐷𝑖𝑓𝛼

𝑈(𝑥̅)] , 𝑖 = 1, … , 𝑛. 
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Definition 2.15 We say that 𝑓 is continuously H-differentiable at 𝑥̅ ∈ 𝑋 ⊆ 𝑅𝑛if all ofthe partial H-

derivatives(
𝜕𝑓̃

𝜕𝑥𝑖
) (𝑥̅), 𝑖 = 1, … , 𝑛 , exist on some neighborhoods of𝑥̅ and are continuous at 𝑥̅. We say that𝑓 

is continuously H-differentiable on X if it is continuously H-differentiable at everyx ∈ 𝑋. 

Proposition 2.16 If 𝑓 is continuously H-differentiable on X, then𝑓𝛼
𝐿and 𝑓𝛼

𝑈are also continuously 

differentiable on X, for all 𝛼 ∈ [0,1]. 
Fuzzy Nonlinear Optimization 

Let 𝑇 be an open subset of 𝑅𝑛and𝑓 be a fuzzy-valued function on T. Consider the following nonlinear 

equality-constrained fuzzy optimization problem: 

min 𝑓(𝑥) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛), 
𝑆. 𝑡.    
𝑐̃𝑖(𝑥) = 0̃, 𝑖 ∈ 𝐸.                           (1) 

Where0̃ defined as 0̃(𝑟) = 1 if 𝑟 = 0 and 0̃(𝑟) = 0 if 𝑟 ≠ 0 and itslevel set is0̃𝛼 = {0} for all 𝛼 ∈ [0,1]. 
Definition 3.1 Let𝑥0 ∈ {𝑥 ∈ 𝑇|𝑐̃𝑖(𝑥) = 0̃, 𝑖 ∈ 𝐸}. We say that 𝑥0 is a non-dominated solution of the 

problem (1) if there exists no 𝑥1(≠ 𝑥0) ∈ 𝑇 such that 𝑓(𝑥1) ≺ 𝑓(𝑥0).  

Definition 3.2 Let 𝑇 be a convex subset of 𝑅𝑛 and 𝑓 be a fuzzy-valued function defined on 𝑇. We say that 

𝑓 is convex at 𝑥0 if: 

𝑓(𝜆𝑥0 + (1 − 𝜆)𝑥) ≼ 𝜆⨀𝑓(𝑥0) ⊕ (1 − 𝜆)⨀𝑓(𝑥):for each 𝜆 ∈ (0,1) and 𝑥 ∈ 𝑇. 

Proposition 3.3 𝑓: 𝑇 ⊆ 𝑅𝑛 → 𝐹(𝑅) is convex at 𝑥0 ∈ 𝑇 if and only if 𝑓𝛼
𝐿(𝑥) and 𝑓𝛼

𝑈(𝑥) are convex at 𝑥0, 

for all 𝛼 ∈ [0,1]. 
Theorem 3.4 Let the fuzzy-valued objective function 𝑓: 𝑇 → 𝐹(𝑅) be convex and continuously H-

differentiable, where 𝑇 ⊆ 𝑅𝑛 is open and convex.The fuzzy-valued constraints functions 𝑐̃𝑖: 𝑇 → 𝐹(𝑅)(𝑖 ∈
𝐸) are convex and continuously H-differentiable. Let 𝑋 = {𝑥 ∈ 𝑇 ⊂  𝑅𝑛|𝑐̃𝑖(𝑥) = 0̃, 𝑖 ∈ 𝐸} be a feasible set 

of problem (1) and let 𝑥0 ∈ 𝑋. Suppose there is some 𝑥 ∈ 𝑇 such that 𝑐̃𝑖(𝑥) = 0̃, 𝑖 ∈ 𝐸. Then 𝑥0 is a non-

dominated solution of problem (1) over X if and only if there exist multipliers 𝜆𝑖 ∈ 𝑅, 𝑖 ∈ 𝐸, such that the 

Karush-Kuhn-Tucker first order conditions hold: 

(i) ∫ (∇𝑓𝛼
𝐿(𝑥0) + ∇𝑓𝛼

𝑈(𝑥0)
1

0
)𝑑𝛼 + ∑ 𝜆𝑖(∇𝑐̃𝑖𝛼

𝐿 (𝑥0) + ∇𝑐̃𝑖𝛼
𝑈 (𝑥0))𝑖∈𝐸 = 0, 

(ii) 𝑐̃𝑖𝛼
𝐿 (𝑥0) = 0, 𝑐̃𝑖𝛼

𝑈 (𝑥0) = 0;  𝑖 ∈ 𝐸, for all 𝛼 ∈ [0,1]. 
Proof 

Necessary Weset: 

𝐹(𝑥) = ∫ (𝑓𝛼
𝐿(𝑥) + 𝑓𝛼

𝑈(𝑥)
1

0
)𝑑𝛼.                                                                                                        (2) 

Since 𝑓 is convex and continuously H-differentiable function, by propositions 2.16 and 3.3, we say that 

F(x) is convex and continuously differentiable real-valued function on T. Since 𝑥0 is a non-dominated 

solution of(1). Then there exists no 𝑥1(≠ 𝑥0) ∈ 𝑇such that for all𝛼 ∈ [0,1]: 

{
𝑓𝛼

𝐿(𝑥1) < 𝑓𝛼
𝐿(𝑥0)

𝑓𝛼
𝑈(𝑥1) ≤ 𝑓𝛼

𝑈(𝑥0)
     𝑜𝑟   {

𝑓𝛼
𝐿(𝑥1) ≤ 𝑓𝛼

𝐿(𝑥0)

𝑓𝛼
𝑈(𝑥1) < 𝑓𝛼

𝑈(𝑥0)
    𝑜𝑟   {

𝑓𝛼
𝐿(𝑥1) < 𝑓𝛼

𝐿(𝑥0)

𝑓𝛼
𝑈(𝑥1) < 𝑓𝛼

𝑈(𝑥0)
. 

That is, there is no 𝑥1(≠ 𝑥0) ∈ 𝑇 such that: 

𝐹(𝑥1) < 𝐹(𝑥0)                                                          (3) 

Therefore:𝐹(𝑥0) ≤ 𝐹(𝑥1). 

Since 𝑐̃𝑖 are convex and continuously H-differentiable functions for𝑖 ∈ 𝐸, so it implies that 𝑐̃𝑖𝛼
𝐿  𝑎𝑛𝑑  𝑐̃𝑖𝛼

𝑈  are 

real-valued convex and continuously differentiable functions for 𝛼 ∈ [0,1]and𝑖 ∈ 𝐸,on the other hand, we 

have: 

𝑋 = {𝑥 ∈ 𝑇 ⊂  𝑅𝑛|𝑐̃𝑖(𝑥) = 0̃, 𝑖 ∈ 𝐸} 

    = {𝑥 ∈ 𝑇 ⊂  𝑅𝑛|𝑐̃𝑖𝛼
𝐿 (𝑥) = 0  𝑎𝑛𝑑  𝑐̃𝑖𝛼

𝑈 (𝑥) = 0, 𝑖 ∈ 𝐸}. 

Therefore, our problem becomes an optimization problem with real objective function F(x) subject to real 

constraints,𝑐̃𝑖𝛼
𝐿 (𝑥) = 0  𝑎𝑛𝑑  𝑐̃𝑖𝛼

𝑈 (𝑥) = 0, 𝑖 ∈ 𝐸. So, by Theorem 12.5 (Pathak and Pirzada, 2011), (KKT 
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conditions for real optimization problems) there exist multipliers 0 ≤ 𝜆𝑖 ∈ 𝑅, 𝑖 ∈ 𝐸, such that the following 

Karush-Kuhn-Tucker first order conditions hold: 

(i) ∇𝐹(𝑥0) + ∑ 𝜆𝑖(∇𝑐̃𝑖𝛼
𝐿 (𝑥0) + ∇𝑐̃𝑖𝛼

𝑈 (𝑥0))𝑖∈𝐸 = 0, 

(ii) 𝑐̃𝑖𝛼
𝐿 (𝑥0) = 0, 𝑐̃𝑖𝛼

𝑈 (𝑥0) = 0;  𝑖 ∈ 𝐸, for all 𝛼 ∈ [0,1]. 
Sufficient We can prove this part by contradiction. Let 𝑥0is not a non-dominated solution. Then there exists 

a  𝑥1(≠ 𝑥0) ∈ 𝑇 such that 𝑓(𝑥1) ≺ 𝑓(𝑥0). Therefore, for all 𝛼 ∈ [0,1] we have 

𝑓𝛼
𝐿(𝑥1) + 𝑓𝛼

𝑈(𝑥1) < 𝑓𝛼
𝐿(𝑥0) + 𝑓𝛼

𝑈(𝑥0) 
We obtain, 

𝐹(𝑥1) < 𝐹(𝑥0) 
Since F is convex and continuously differentiable function. In addition, 

𝑥0 ∈ 𝑋 = {𝑥 ∈ 𝑇 ⊂  𝑅𝑛|𝑐̃𝑖(𝑥) = 0̃, 𝑖 ∈ 𝐸}. 

By conditions (i) and (ii) of this theorem, we obtain the following new conditions: 

a. ∇𝐹(𝑥0) + ∑ 𝜆𝑖(∇𝑐̃𝑖𝛼
𝐿 (𝑥0) + ∇𝑐̃𝑖𝛼

𝑈 (𝑥0))𝑖∈𝐸 = 0, 

b. 𝑐̃𝑖𝛼
𝐿 (𝑥0) = 0, 𝑐̃𝑖𝛼

𝑈 (𝑥0) = 0;  𝑖 ∈ 𝐸, for all 𝛼 ∈ [0,1]. 
Using theorem 12.5 Pathak and Pirzada, (2011), we say that 𝑥0 is an optimal solution of real-objective 

function F with real constraints 𝑐̃𝑖𝛼
𝐿 (𝑥0) = 0, 𝑐̃𝑖𝛼

𝑈 (𝑥0) = 0;  𝑖 ∈ 𝐸, for all 𝛼 ∈ [0,1], i.e. 𝐹(𝑥0) ≤ 𝐹(𝑥1), 

which contradicts to (3). Hence, the proof is completed. 

Let 𝑇be an open subset of 𝑅𝑛and𝑓 be a fuzzy-valued function on T. Consider the following nonlinear 

unconstrained fuzzy optimization problem: 

min 𝑓(𝑋) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛), 
𝑆. 𝑡.   𝑋 ∈ 𝑇.                                                                                                                                           (4) 
For solving the problem (4), we will use of the Newton method that described by Pirzade and Pathak, 

(2013). A locally non-dominated solution of the problem (4) is given as follows. 

 

Definition 3.5 Let 𝑇be an open subset of𝑅𝑛.  

(i) A point 𝑥̅ ∈ 𝑇 is a locally non-dominated solution of (4) if there exists no 𝑥0(≠ 𝑥̅) ∈ 𝑁𝜖(𝑥̅) ∩ 𝑇 

such that: 𝑓(𝑥0) ≺ 𝑓(𝑥̅). Where 𝑁𝜖(𝑥̅) is a 𝜖-neighborhood of  𝑥̅. 

(ii)  A point 𝑥̅ ∈ 𝑇 is a non-dominated solution of (4) if there exists no 𝑥0(≠ 𝑥̅) ∈ 𝑇such that:𝑓(𝑥0) ≺
𝑓(𝑥̅). 

 

(iii) A point 𝑥̅ ∈ 𝑇 is a locally weak non-dominated solution of (4) if there exist no 𝑥0(≠ 𝑥̅) ∈ 𝑁𝜖(𝑥̅) ∩
𝑇such that: 𝑓(𝑥0) ≼ 𝑓(𝑥̅). 

 

(iv) A point 𝑥̅ ∈ 𝑇 is a weak non-dominated solution of (4) if there exists no𝑥0(≠ 𝑥̅) ∈ 𝑇such that: 

𝑓(𝑥0) ≼ 𝑓(𝑥̅). 

Quadratic Fuzzy Penalty Method 

We describe the quadratic fuzzy penalty method first in the context of the equality-constrained problem: 

min
𝑥

𝑓(𝑥), 

𝑆. 𝑡.    
𝑐̃𝑖(𝑥) = 0̃, 𝑖 ∈ 𝐸.  (5) 

Where 𝑓(𝑥) is a fuzzy function and , 𝑐̃𝑖(𝑥) = 0̃, 𝑖 ∈ 𝐸, are fuzzy constraints.  

The quadratic fuzzy penalty function for this formulation is: 

𝑄̃(𝑥, 𝜇) = 𝑓(𝑥) +
𝜇

2
∑ 𝑐̃𝑖

2
𝑖∈𝐸 (𝑥).            (6) 

Where 𝜇 > 0 is penalty parameter. By driving 𝜇to ∞, we penalize the constraint violations with increasing 

severity. It makes good intuitive sense to consider a sequence of values {𝜇𝑘} with   𝜇𝑘 ↑ ∞ as 𝑘 → ∞, and 

to seek the approximate minimizer 𝑥𝑘 of 𝑄̃(𝑥, 𝜇𝑘) for each k. Because the penalty terms in (6) are smooth, 

we can use techniques from unconstrained fuzzy optimization to search for 𝑥𝑘. For suitable choices of the 
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sequence {𝜇𝑘} and the initial guesses, just a few steps of unconstrained fuzzy minimization may be needed 

for each {𝜇𝑘}. 
For the general constrained nonlinear fuzzy optimization problem: 

min
𝑥

𝑓(𝑥), 

𝑆. 𝑡.    
𝑐̃𝑖(𝑥) = 0̃, 𝑖 ∈ 𝐸, 
𝑐̃𝑖(𝑥) ≽ 0̃, 𝑖 ∈ 𝐼.   (7) 

We can define the quadratic fuzzy penalty function for the problem (7) as: 

𝑄̃(𝑥; 𝜇) = 𝑓(𝑥) +
𝜇

2
∑ 𝑐̃𝑖

2
𝑖∈𝐸 (𝑥) +

𝜇

2
∑ ([𝑐̃𝑖(𝑥)]−)2

𝑖∈𝐼     (8) 

where  [𝑦̃]− = max {−𝑦̃, 0̃}. 

In this case, 𝑄̃ may be less smooth than the objective and constraint functions. 

Algorithmic Framework:A general framework for algorithms based on the quadratic fuzzy penalty function 

(6) can be specified as follows. 

Framework 4.1.1 (Quadratic fuzzy penalty method) 

Given 𝜇0 > 0, nonnegative sequences{𝜏𝑘1
}, {𝜏𝑘2

} with𝜏𝑘1
, 𝜏𝑘2

→ 0, and a starting point 𝑥0
𝑠. 

For𝑘 = 0,1,2, … 

Find an approximate minimizer 𝑥𝑘 of 𝑄̃(𝑥, 𝜇𝑘), starting at 𝑥𝑘
𝑠 . 

and terminating when: 

‖∇𝑥𝑄̃𝛼
𝑈(𝑥, 𝜇𝑘)‖ ≤ 𝜏𝑘  𝑎𝑛𝑑 ‖∇𝑥𝑄̃𝛼

𝐿(𝑥, 𝜇𝑘)‖ ≤ 𝜏𝑘 for all 𝛼 ∈ [0,1]; where: 𝜏𝑘 = min {𝜏𝑘1
, 𝜏𝑘2

}. 

If final convergence test satisfied 

Stop with approximate solution 𝑥𝑘; 
End (If) 

Choose new penalty parameter 𝜇𝑘+1 > 𝜇𝑘; 
Choose new starting point 𝑥𝑘+1

𝑠  

End (For) 

The parameter sequence {𝜇𝑘}can be chosen adaptively, based on the difficulty ofminimizing the penalty 

function at each iteration. When minimization of 𝑄̃(𝑥, 𝜇𝑘)provesto be expensive for some k, we choose 

𝜇𝑘+1 to be only modestly larger than𝜇𝑘; for instance 𝜇𝑘+1 = 1.5𝜇𝑘. If we find the approximate minimizer 

of 𝑄̃(𝑥, 𝜇𝑘) cheaply, we could try a more ambitious increase, for instance𝜇𝑘+1 = 10𝜇𝑘. The convergence 

theory for Framework 4.1.1 allows wide latitude in the choice of nonnegative tolerances 𝜏𝑘 =
min {𝜏𝑘1

, 𝜏𝑘2
};it requires only that 𝜏𝑘 → 0, to ensure that the minimization is carried out more accurately as 

the iterations progress. 

When only equality constraints are present, 𝑄̃(𝑥, 𝜇𝑘) is smooth, so the algorithms for unconstrained fuzzy 

minimization described by (Pathak and Pirzada, 2013)can be used to identify the approximate solution𝑥𝑘. 

However, the minimization of 𝑄̃(𝑥, 𝜇𝑘) becomes more difficult to perform as 𝜇𝑘 becomes large, unless we 

use special techniques to calculate the search directions. For one thing, theHessian ∇𝑥𝑥
2 𝑄̃(𝑥, 𝜇𝑘)becomes 

arbitrarily ill conditioned near the minimizer. This property alone is enough to make unconstrained fuzzy 

minimization algorithms such as Newton’s method proposed by (Pathak and Pirzada, 2013).This method, 

is not sensitive to ill conditioning of the Hessian, but it, too, may encounter difficulties for large 𝜇𝑘. 

Convergence of Tthe Proposed Method 

We describe some convergence properties of the quadratic fuzzy penalty method in the following two 

theorems. We restrict our attention to the equality-constrained problem (5), for which the quadratic fuzzy 

penalty function is defined by (6). For the first result, we assume that the fuzzy penalty function 𝑄̃(𝑥, 𝜇𝑘) 

has a finite minimizer for each value of  𝜇𝑘. 

Theorem 5.1 Suppose that each 𝑥𝑘 is the exact global minimizer of 𝑄̃(𝑥, 𝜇𝑘) defined by (6) in framework 

4.1.1, and 𝜇𝑘 ↑ ∞. Then every limit point 𝑥∗ of the sequence {𝑥𝑘} is a global solution of the problem (5). 

Proof  Let 𝑥̅ be a global solution of (5), that is, 
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𝑓(𝑥̅) ≼  𝑓(𝑥), for all 𝑥 with 𝑐̃𝑖(𝑥) = 0̃, 𝑖 ∈ 𝐸. 

Since 𝑥𝑘 minimizes 𝑄̃(. ; 𝜇𝑘) for each 𝑘, we have 𝑄̃(𝑥𝑘; 𝜇𝑘) ≼ 𝑄̃(𝑥̅; 𝜇𝑘), which leads to the inequality 

𝑓(𝑥𝑘) +
𝜇𝑘

2
∑ 𝑐̃𝑖

2
𝑖∈𝐸 (𝑥𝑘) ≼ 𝑓(𝑥̅) +

𝜇𝑘

2
∑ 𝑐̃𝑖

2
𝑖∈𝐸 (𝑥̅) = 𝑓(𝑥̅)     (9) 

By rearranging this expression, we obtain 

∑ 𝑐̃𝑖
2

𝑖∈𝐸 (𝑥𝑘) ≼
2

𝜇𝑘
[𝑓(𝑥̅) − 𝑓(𝑥𝑘)].                                                                                                    (10) 

Suppose that 𝑥∗ is a limit point of {𝑥𝑘}, so there is an infinite subsequence Κ such that 

lim
𝑘∈Κ

𝑥𝑘 = 𝑥∗. 

By taking the limit as 𝑘 → ∞, 𝑘 ∈ Κ, on both sides of (10), we obtain 

∑ 𝑐̃𝑖
2

𝑖∈𝐸

(𝑥∗) = lim
𝑘∈Κ

∑ 𝑐̃𝑖
2

𝑖∈𝐸

(𝑥𝑘) ≼ lim
𝑘∈Κ

2

𝜇𝑘
[𝑓(𝑥̅) − 𝑓(𝑥𝑘)] = 0, 

where the last equality follows from 𝜇𝑘 ↑ ∞. Therefore, we have 𝑐̃𝑖(𝑥∗) = 0̃, for all 𝑖 ∈ 𝐸, so 𝑥∗ is a feasible 

point. Moreover, by taking the limit as 𝑘 → ∞, for k ∈ K in (9), we have by no negativity of 𝜇𝑘 and of each 

𝑐̃𝑖
2(𝑥𝑘) that 

𝑓(𝑥∗) ≼ 𝑓(𝑥∗) + lim
𝑘∈Κ

𝜇𝑘

2
∑ 𝑐̃𝑖

2

𝑖∈𝐸

(𝑥𝑘) ≼ 𝑓(𝑥̅). 

Since 𝑥∗ is a feasible point whose objective value is no larger than that of the global solution 𝑥̅, we conclude 

that 𝑥∗, too, is a global solution, as claimed. 

   Since this result requires us to find the global minimizer for each sub-problem, this desirable property of 

convergence to the global solution of (5) cannot be attained in general. The next result concerns 

convergence properties of the sequence {𝑥𝑘} when we allow inexact (but increasingly accurate) 

minimizations of 𝑄̃(. ; 𝜇𝑘). In contrast to Theorem 5.1, it shows that the sequence may be attracted to 

infeasible points, or to any KKT point (that is, a point satisfying first-order necessary conditions of theorem 

3.4) rather than to a minimizer. It also shows that the quantities 𝜇𝑘 𝑐̃𝑖(𝑥𝑘) may be used as estimates of the 

Lagrange multipliers𝜆̃𝑖
∗ in certain circumstances. To establish the result we will make the (optimistic) 

assumption that the stop test in framework 4.1.1 is satisfied. 

Definition 5.2 Let 𝑓: 𝑇 ⊆ 𝑅 → 𝐹(𝑅) be a fuzzy-valued function. Then we say 𝑥∗ ∈ 𝑇 is a stationary point 

of the function 𝑓. If 0 ∈ (𝑓(𝑥∗)′)𝛼 for some value of 𝛼 ∈ [0,1]. On the other hand 𝑥∗ ∈ 𝑇 is a stationary 

point of the function 𝑓 if  𝑓′(𝑥∗) = 0̃. 

Theorem 5.3 Suppose that the tolerances and penalty parameters in Framework 4.1.1 satisfy 

min {𝜏𝑘1
, 𝜏𝑘2

} = 𝜏𝑘 → 0 and 𝜇𝑘 ↑ ∞. Then if a limit point 𝑥∗ of the sequence {𝑥𝑘} is infeasible, it is a 

stationary point of the function ‖𝑐̃(𝑥)‖2. On the other hand, if a limit point 𝑥∗ is feasible and the constraint 

gradients ∇𝑐̃𝑖(𝑥∗) are linearly independent, then 𝑥∗ is a KKT point for the problem (5). For such points, we 

have for any infinite subsequence K such that lim
𝑘∈Κ

𝑥𝑘 = 𝑥∗ that  

lim
𝑘∈Κ

𝜇𝑘 𝑐̃𝑖(𝑥𝑘) = −𝜆̃𝑖
∗ for all 𝑖 ∈ 𝐸.                                                                                                      (11) 

Where 𝜆̃∗ is the multiplier vector that satisfies the KKT conditions, for the problem (5). 

Proof By differentiating 𝑄̃(𝑥; 𝜇𝑘) in (6), we obtain 

∇𝑥𝑄̃(𝑥𝑘, 𝜇𝑘) = ∇𝑓(𝑥𝑘) + ∑ 𝜇𝑘 𝑐̃𝑖(𝑥𝑘)∇𝑐̃𝑖(𝑥𝑘)𝑖∈𝐸     (12) 

Therefore, from the termination criterion for Framework 4.1.1, we have  

‖∇𝑓𝛼
𝑈(𝑥𝑘) + ∑ 𝜇𝑘 𝑐̃𝑖𝛼

𝑈 (𝑥𝑘)∇𝑐̃𝑖𝛼
𝑈 (𝑥𝑘)𝑖∈𝐸 ‖ ≤ 𝜏𝑘 , for all 𝛼 ∈ [0,1].                                                 (13) 

where 𝜏𝑘 = min {𝜏𝑘1
, 𝜏𝑘2

}. 

By rearranging this expression (and in particular using the inequality ‖𝑎‖ − ‖𝑏‖ ≤ ‖𝑎 + 𝑏‖) we obtain 

‖∑ 𝜇𝑘 𝑐̃𝑖𝛼
𝑈 (𝑥𝑘)∇𝑐̃𝑖𝛼

𝑈 (𝑥𝑘)𝑖∈𝐸 ‖ ≤
1

𝜇𝑘
[𝜏𝑘 + ‖∇𝑓𝛼

𝑈(𝑥𝑘)‖], for all𝛼 ∈ [0,1].                                             (14) 

Let 𝑥∗ be a limit point of the sequence of iterates. Then there is a subsequence K such that      lim
𝑘∈Κ

𝑥𝑘 = 𝑥∗. 

When we take limits as 𝑘 → ∞, for k ∈ K, the bracketed term on the right-hand-side approaches 
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to‖∇𝑓𝛼
𝑈(𝑥∗)‖, so because 𝜇𝑘 ↑ ∞, the right-hand-side approaches to zero. From the corresponding limit on 

the left-hand-side, we obtain 

∑ 𝜇𝑘 𝑐̃𝑖𝛼
𝑈 (𝑥∗)∇𝑐̃𝑖𝛼

𝑈 (𝑥∗)𝑖∈𝐸 = 0,for all 𝛼 ∈ [0,1].(15) 

Similarly, we have: 

∑ 𝜇𝑘 𝑐̃𝑖𝛼
𝐿 (𝑥∗)∇𝑐̃𝑖𝛼

𝐿 (𝑥∗)𝑖∈𝐸 = 0,for all 𝛼 ∈ [0,1].                                                                               (16) 

Therefore, 𝑐̃𝑖(𝑥∗) ≠ 0̃ (if the constraints gradients ∇𝑐̃𝑖(𝑥∗) are dependent), but in this case, (15) and (16) 

implies that 𝑥∗ is a stationary point of the function ‖𝑐̃(𝑥)‖2. 

On the other hand, if the constraint gradients ∇𝑐̃𝑖(𝑥∗) are linearly independent at a limit point 𝑥∗, we have 

from (15) and (16) that 𝑐̃𝑖(𝑥∗) = 0̃ for all 𝑖 ∈ 𝐸, so  𝑥∗ is a feasible point. Hence, the second KKT condition 

(ii) of theorem 3.4 is satisfied. We need to check the first KKT condition (i) of theorem 3.4 as well, and to 

show that the limit (11) holds. By using 𝐴̃(𝑥) to denote the matrix of constraint gradients (known as the 

Jacobin), that is, 

𝐴̃(𝑥)𝑇 = [∇𝑐̃𝑖(𝑥)]𝑖∈𝐸     (17) 

and 𝜆̃𝑘 to denote the vector 𝜇𝑘 𝑐̃(𝑥𝑘), we have as in (5.5), for all 𝛼 ∈ [0,1]: 

−𝐴̃𝛼
𝑈(𝑥𝑘)𝑇𝜆̃𝑘𝛼

𝑈 = ∇𝑓𝛼
𝑈(𝑥𝑘) − ∇𝑥𝑄̃𝛼

𝑈(𝑥𝑘, 𝜇𝑘); ‖∇𝑥𝑄̃𝛼
𝑈(𝑥, 𝜇𝑘)‖ ≤ 𝜏𝑘     (18) 

For all 𝑘 ∈ 𝐾 sufficiently large, the matrix 𝐴̃𝛼
𝑈(𝑥𝑘) has full row rank, so 𝐴̃𝛼

𝑈(𝑥𝑘)𝐴̃𝛼
𝑈(𝑥𝑘)𝑇 is nonsingular, 

for all 𝛼 ∈ [0,1]. 
By multiplying 𝐴̃𝛼

𝑈(𝑥𝑘) to both sides of (18) and rearranging, we have  

𝜆̃𝑘𝛼
𝑈 = −[𝐴̃𝛼

𝑈(𝑥𝑘)𝐴̃𝛼
𝑈(𝑥𝑘)𝑇]

−1
[𝐴̃𝛼

𝑈(𝑥𝑘)∇𝑓𝛼
𝑈(𝑥𝑘) + ∇𝑥𝑄̃𝛼

𝑈(𝑥𝑘, 𝜇𝑘)]. 

Hence, by taking the limit as 𝑘 ∈ 𝐾 goes to ∞, we find  

𝜆̃𝛼
∗𝑈 = lim

𝑘∈𝐾
𝜆̃𝑘𝛼

𝑈 = −[𝐴̃𝛼
𝑈( 𝑥∗)𝐴̃𝛼

𝑈( 𝑥∗)𝑇]−1𝐴̃𝛼
𝑈( 𝑥∗)∇𝑓𝛼

𝑈( 𝑥∗). 

Similarly, we can show that 

𝜆̃𝛼
∗𝐿 = lim

𝑘∈𝐾
𝜆̃𝑘𝛼

𝐿 = −[𝐴̃𝛼
𝐿 ( 𝑥∗)𝐴̃𝛼

𝐿 ( 𝑥∗)𝑇]−1𝐴̃𝛼
𝐿 ( 𝑥∗)∇𝑓𝛼

𝐿( 𝑥∗). 

By taking limits in (13), we conclude that 

∇𝑓𝛼
𝑈( 𝑥∗) + 𝐴̃𝛼

𝑈( 𝑥∗)𝑇𝜆̃𝛼
∗𝑈 = 0, for all 𝛼 ∈ [0,1]. 

Similarly, we have 

∇𝑓𝛼
𝐿( 𝑥∗) + 𝐴̃𝛼

𝐿 ( 𝑥∗)𝑇𝜆̃𝛼
∗𝐿 = 0, for all 𝛼 ∈ [0,1].                                                                              (19) 

So that 𝜆̃∗ satisfies the first KKT condition (i) of theorem 3.4 for (5). Hence, 𝑥∗ is a KKT point for (5), with 

unique Lagrange multiplier vector 𝜆̃∗
. 

 

Numerical Examples 

In this section, we present some examples and use proposed method in section 4 to solve them. In addition, 

the Newton method for solving the unconstrained fuzzy optimization problems (Pathak and Pirzada, 2013) 

is used.  

Example 1 Consider the following fuzzy optimization problem with one equality constraints: 

min 1̃⨀𝑥1⨁1̃⨀𝑥2, 
𝑆. 𝑡.    
1̃⨀𝑥1

2⨁1̃⨀𝑥2
2 ⊖𝐻 2̃ = 0̃, 

𝑥1, 𝑥2 ≥ 0.(20) 
Where 1̃ = (0,1,2) and 2̃ = (0,2,4) are triangular fuzzy numbers. 

Here, the quadratic fuzzy penalty function is: 

𝑄̃(𝑥; 𝜇) = 1̃⨀𝑥1⨁1̃⨀𝑥2⨁
𝜇

2
(1̃⨀𝑥1

2⨁1̃⨀𝑥2
2 ⊖𝐻 2̃)

2
.                                                                     (21) 

By solving the problem (21) with Newton method, the optimal solution is obtained as 𝑥∗ = (1,1)𝑇 . 
Example 2 Consider the following fuzzy optimization problem with two equality constraints:  

min −1̃⨀𝑥1 

𝑆. 𝑡.    
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1̃⨀𝑥1
2⨁1̃⨀𝑥2

2 = 1̃, 
(1̃⨀𝑥1 ⊖𝐻 1̃)3 ⊖𝐻 1̃⨀𝑥2

2 = 0̃, 
𝑥1, 𝑥2 ≥ 0.(22) 
where1̃ = (0,1,2).  

The quadratic fuzzy penalty function is: 

𝑄̃(𝑥; 𝜇) = −1̃⨀𝑥1⨁
𝜇

2
⨀[(1̃⨀𝑥1

2⨁1̃⨀𝑥2
2 ⊖𝐻 1̃)

2
⨁((1̃⨀𝑥1 ⊖𝐻 1̃)3 ⊖𝐻 1̃⨀𝑥2

2)
2

] = 0̃.   (23) 

By solving the problem (23) with Newton method the optimal solution is obtained as  𝑥∗ = (1,0)𝑇 . 
Example 3 Consider the following fuzzy optimization problem with equality and inequality constraints: 

min −2̃⨀𝑥2 

𝑆. 𝑡.    
1̃⨁1̃⨀𝑥1 ⊖𝐻 2̃⨀𝑥2 ≽ 0̃, 
1̃⨀𝑥1

2⨁1̃⨀𝑥2
2 ⊖𝐻 1̃ = 0̃, 

𝑥1, 𝑥2 ≥ 0.(24) 
Where 1̃ = (0,1,2) and 2̃ = (0,2,4) are triangular fuzzy numbers. 

The quadratic fuzzy penalty function is: 

𝑄̃(𝑥; 𝜇) = (−2̃⨀𝑥2)⨁
𝜇

2
⨀[(1̃⨀𝑥1

2⨁1̃⨀𝑥2
2 ⊖𝐻 1̃)2⨁([1̃⨁1̃⨀𝑥1 ⊖𝐻 2̃⨀𝑥2]−)2 = 0̃. (25) 

By solving the problem (25) with Newton method the optimal solution is obtained as 𝑥∗ = (0.6,0.8)𝑇. 
 

CONCLUSION 

In this paper, a quadratic fuzzy penalty method presented for solving nonlinear fuzzy programming 

problems. We have proved the convergence of the method and presented an algorithm for the same. 

Appropriate illustrations are given to justify the proposed method. 
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