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ABSTRACT 

This research empirically modeled energy consumption and GHG emission reduction in sorghum 

production in Niger State of Nigeria, using cross sectional data collected from 90 farmers’ viz. multi-stage 

sampling techniques. Efficiency of energy inputs used in sorghum production was studied; degrees of 

technical efficiency (TE), pure technical efficiency (PTE) and scale efficiency (SE) were determined; 

wasteful uses of energy by inefficient units were assessed; energy saving of different sources was 

computed; effect of energy optimization on greenhouse gas (GHG) emission was investigated; and, the 

total amount of GHG emission of actual energy used was compared with optimum energy required using 

data envelopment analysis (DEA). Based on findings, it was found that 20% and 80% of sorghum 

producers based on BCC model were efficient and inefficient, respectively. However, the average 

technical, pure technical and scale efficiency scores of producers were 0.599, 0.778 and 0.77, 

respectively. Furthermore, it was observed that 34.15% (1009.35MJha
-1

) of total energy input can be 

saved if the performance of inefficient farms rose to a high level while still maintaining the same level of 

yield currently achieved. The improved energy use efficiency, energy productivity, net energy, total 

energy output and productivity of efficient units were found to be higher than that of inefficient units’ by 

39.47%, 38.46%, 20.95%, 9.88% and 9.88%, respectively, using energy optimization technique. 

Furthermore, the greenhouse gas emission in efficient units was less than that of inefficient units by about 

20.01% which translate into the value of 11.83KgCO2eqha
-1

. However, nitrogen fertilizer had the highest 

difference of greenhouse gas emissions between efficient and inefficient unit in sorghum production. 

Based on these, it is recommended that policies should emphasize on development of new technologies to 

substitute agrochemical inputs with renewable energy sources aiming efficient use of energy and lowering 

the environmental footprints. Also, the use of stereotype fertilizer should be discouraged, and if possible 

policy banning it should be enacted. 

 

Keywords: Energy, GHG Emission, Efficient vs. Inefficient, Sorghum, Nigeria  

 

INTRODUCTION 

Climate change also known as global warming refers to the rate in average surface temperature on the 

earth; while change in the weather may occur suddenly and noticeably, changes in the climate take a long 

time, and are thereof less obvious. There have been changes in the earth’s climate and all forms adapted 

naturally to this change. However, in the last 150-200 years climate change has been taking place too 

rapidly, such that certain plant and animal species find it hard to adopt. Though, human activities are said 

to be responsible for the speed at which climate change has been taking place. Agricultural sector is a 

driving force in the gas emissions and land use effects thought to cause climate change. In addition to 

being a significant user of land and consumer of fossil fuel, agriculture contributes directly to greenhouse 

gas emissions through practices such as arable crop production and livestock rising. According to the 

Intergovernmental Panel on Climate Change (IPCC, 2007), the three main causes of increase in GHG 

observed over the past 250 years, have been fossil fuels, land use and agriculture. As the global awareness 

and effects of climate change increases, so is the fear that crop production which has become Nigerian 

agricultural mainstay is at risk. Fear is rife that agricultural sector is seriously under threat by climate 
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change which is affecting crop production. Many studies, Fischer et al., (2002), Sathaye et al., (2006), 

Singh and Pal, (2010) have suggested that rising temperature could be harmful to farms around the world, 

although there are plenty of uncertainty about how bad things will get and which food supplies we should 

worry about most. The consistent negative impact from increasing temperature warrant critical needed 

investment in climate change adaptation strategies to counteract the adverse effects of rising temperature 

on global crop production, including genetic improvement and management adjustments. It is a known 

fact that global warming and climate change have emerged as a serious threats to the sustainability of 

natural environment, farming, as well as all forms of life. And to meet this challenge, development 

programmes must have built-in provision for mitigating the impact of global warming and climate 

change. The policy makers need comprehensive knowledge and understanding of the implication of 

global warming and climate change, so that programmes can be oriented accordingly. However, this 

current research explore on mitigation strategies of GHG emission in Nigerian agriculture which 

contribute to global warming and climate change, with special reference to arable crop production due to 

dearth of consequential empirical information, because literature review showed only few empirical 

studies which adopted consequential methodology (non-parametric) e.g Khoshnevisan et al., (2013), 

Nabavi-Pelesaraei et al., (2014), Sadiq et al., (2016a), Sadiq et al., (2016b). Also, effective energy use 

and sustainability in agricultural production are significantly correlated and literature is repeated with 

reports focused on energy consumption in agricultural production. Safa and Samarasinghe (2011) as cited 

by Khoshnevisan et al., (2015) reported that energy modeling is an interesting subject for engineers and 

scientists who are concerned with energy production, consumption and related environmental impacts. 

        

MATERIALS AND METHODS 

Research Methodology 

This study was conducted in Niger State of Nigeria. The state is located in the north-central part of 

Nigeria, lying between longitude 3
0
 30

1
 and 7

0 
20

1
 east of the Greenwich Meridian and latitude 8

0
 20

1
 and 

11
0
 30

1
 north of the equator (Sadiq and Yakasai, 2012); with approximately 80,000 square kilometre 

landmass having varying physical features like hills, lowland and rivers; enjoys luxuriant vegetation with 

vast northern guinea savannah found in the north while the fringe (southern guinea savannah) in the 

southern part of the state (Sadiq and Isah, 2015); annual precipitation is between 1100mm and 1600mm 

with average monthly temperature hovering around 23˚C to 37˚C (Sadiq, 2016). The inhabitants are 

predominantly peasant farmers cultivating mainly food crops such as yam, cassava, maize, rice and 

sorghum for family consumption and market (Sadiq, 2014). A multi-stage sampling technique was relied 

upon to select 90 sorghum farmers who were spread over 3 agricultural zones of the state. Stage wise 

selection are: purposive selection of all the three (3) agricultural zones because the crop is cultivated 

across the state; followed by purposive selection of one (1) LGA from each zone based on preponderance 

of sorghum producers; then random selection of three (3) villages from each chosen LGA; and random 

selection of ten (10) producers from each chosen village, thus, given a total sample size of 90 active 

producers. Developed structured questionnaire after been pre-tested was administered on the study’s 

respondents on fortnight basis during 2015 cropping season to gather information on inputs-output. 

Collected data were analyzed using Data Envelopment Analysis model (DEA). 

 

Table 1a: Equivalents for Various Sources of Energy 

Items  Unit  Equivalent MJ Remarks 

Labour  Man-hour 1.96  

Seeds  Kg 15.2 Processed  

Nitrogen  Kg 60.60  

P2O5 Kg  11.1  

K2O Kg  6.7  

Herbicides  Kg   238  

Sorghum output (seed) Kg 14.7  



CIBTech Journal of Biotechnology ISSN: 2319–3859 (Online) 

An Open Access, Online International Journal Available at http://www.cibtech.org/cjb.htm 

2016 Vol. 5 (4) October-December, pp.6-20/Sadiq and Grema 

Research Article 

 Centre for Info Bio Technology (CIBTech)  8 

 

Table 1b: Amount of Inputs-Output and their Energy Equivalents for Sorghum Production 

Input  Qty ha
-1

 Equivalent 

MJ 

Total Energy 

Equivalent (MJha
-1

) 

Percentage  

Family labour 114.09 1.96 223.62 7.55 

Human Labour  70.577 1.96 138.33 4.66 

Improved seeds  2.799 15.2 42.55 1.42 

Nitrogen  28.52 60.6 1728.28 58.43 

P2O5 14.26 11.1 158.28 5.33 

K2O 14.26 6.7 95.54 3.21 

Herbicides  14.26 238 568.82 19.42 

Total input   2955.42 100 

Sorghum product (seed) 814.124 14.7 11967.62  

Total output energy    9012.20  

Source: Field survey, 2015 

 

Empirical Model 

Data Envelopment Analysis (DEA) 

Mathematically, DEA is a Linear Programming (LP)-based methodology for evaluating the relative 

efficiency of a set of Decision Making Units (DMUs) with multi-input and multi-output, i.e. a non-

parametric data analytic technique whose domain of inquiry is a set of entities, commonly called decision-

making units (DMUs), which receive multiple inputs and produce multiple outputs (Heidari et al., 2012). 

The technique builds a linear piece-wise function from empirical observations of inputs and outputs.  

Unlike parametric methods, DEA does not require a function to relate inputs and outputs. The DEA 

envelops the data in such a way that all observed data points lie on or below the efficient frontier (Coelli, 

1996). Also, it does not require any assumption on the shape of the frontier surface and it makes no 

assumptions concerning the internal operations of a DMU (Emrouznejad and Tavana, 2014). The efficient 

frontier is established by efficient units from a group of observed units. In DEA an inefficient DMU can 

be made efficient either by minimizing the input levels while maintaining the same level of outputs (input 

oriented), or, symmetrically, by maximizing the output levels while holding the inputs constant (output 

oriented). Since DEA was first introduced in 1978 in its present form, researchers in a number of fields 

have quickly recognized that it is an excellent and easily used methodology for modeling operational 

processes for performance evaluations. This has been accompanied by other developments (Cooper et al., 

2011). It means DEA is receiving increasing importance as a tool for evaluating and improving the 

performance of manufacturing and service operations. It has been extensively applied in performance 

evaluation and benchmarking of schools, hospitals, bank branches, production plants, etc. (Charnes et al., 

1978). Also, agricultural enterprise and its profitability rely on finite and scarce resources; therefore, the 

use of input-oriented DEA models is more appropriate to minimize costs and maximize profit in the 

production process.  

Charnes et al., (1984) introduced CCR model which was built on the assumption of constant returns to 

scale. It is also called the global efficiency model. Later, Banker et al., (1984) suggested the BCC model 

based on variable returns to scale (VRS) and it is also called the local efficiency model. DEA models are 

broadly divided into two categories on the basis of orientation: input-oriented and output-oriented. 

Objective of input-oriented model is to minimizing inputs while maintaining the same level of outputs, 

whereas output-oriented model focus on increasing outputs with the same level of inputs. In this study an 

input-oriented (VRS) DEA model was used to determine efficient and inefficient DMUs.  

Three different forms of efficiency defined by DEA are technical efficiency (TE), pure technical 

efficiency (PTE) and scale efficiency (SE). The efficiency models are given below: 

Technical efficiency (TE) 

TE can be defined as the ability of a DMU (e.g. a farm) to produce maximum output given a set of inputs 

and technology level. The TE score ( ) in the presence of multiple-input and output factor can be 
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calculated by the ratio of sum of weighted outputs to the sum of weighted inputs or in a mathematical 

expression given below (Cooper et al., 2004): 

 = U1Y1j + U2Y2j + …. + UsYsj       =        
       …………………….. (1) 

     V1X1j + V2X2j + …… + VmXmj              
    

Let the DMUj to be evaluated on any trial be designated as DMUo (o = 1, 2 . . . n). To measure the 

relative efficiency of a DMUo based on a series of n DMUs, the model is structured as a fractional 

programming problem, and specified as follows (Cooper et al., 2006): 

Max:   =        
             ……………………….. (2) 

                       
    

Subject to:          
       ≤ 1           j=1, 2 ………….. n 

                              
    

Ur ≥ 0,   Vi ≥ 0 

Where, n is the number of DMUs in the comparison, s the number of outputs, m the number of inputs, Ur 

(r = 1, 2, …, s) the weighting of output Yr in the comparison, Vi (i = 1, 2, …, m) the weighting of input 

Xi, and Yrj and Xij represent the values of the outputs and inputs Yj and Xi for DMUj, respectively. 

Equation (2) can equivalently be written as a linear programming (LP) problem as follows: 

Max:   =         
    ……………………….. (3) 

Subject to:        
    -        

    ≤ 0    J=1, 2……….. n 

        

 

   

 

Ur ≥ 0, Vi ≥ 0 

The dual linear programming (DLP) problem is simpler to solve than Equation (3) due to fewer 

constraints. Mathematically, the DLP problem is written in vector–matrix notation as follows: 

Min:  ……………………………. (4) 

Subject to:  Yλ ≥ y0 

                   Xλ –  X0 ≤ 0 

                  λ ≥ 0 

Where, Yo is the s x 1 vector of the value of original outputs produced and Xo is the m x 1vector of the 

value of original inputs used by the o
th
 DMU. Y is the s x n matrix of outputs and X is the m x n matrix of 

inputs of all n units included in the sample. λ is a n x 1 vector of weights and Ө is a scalar with boundaries 

of one and zero which determines the technical efficiency score of each DMU. Model (4) is known as the 

input-oriented CCR DEA model. It assumes constant returns to scale (CRS), implying that a given 

increase in inputs would result in a proportionate increase in outputs. 

Pure technical efficiency (PTE) 

The TE derived from CCR model, comprehend both the technical and scale efficiencies. So, Banker et al., 

(1984) developed a model in DEA, which was called BCC model to calculate the PTE of DMUs. The 

BCC model is provided by adding a restriction on λ (λ =1) in the model (4), resulted to no condition on 

the allowable returns to scale. This model assumes variable returns to scale (VRS), indicating that a 

change in inputs is expected to result in a disproportionate change in outputs. 

Scale efficiency (SE) 

SE relates to the most efficient scale of operations in the sense of maximizing the average productivity. A 

scale efficient farmer has the same level of technical and pure technical efficiency scores. It can be 

calculated as follow: 

SE = TE   ……………………………. (5) 

         PTE 

SE gives the quantitative information of scale characteristics. It is the potential productivity gained from 

achieving optimum size of a DMU. Using scale efficiency helps producers to find the effect of farm size 

on efficiency of production. Simply, it indicates that some part of inefficiency refers to inappropriate size 

of DMU, and if DMU moved toward the best size the overall efficiency (technical) can be improved at 
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the same level of technologies (inputs) (Nassiri and Singh, 2009; Qasemi-Kordkheili and Nebavi-

Pelesaraei, 2014). If a farm is fully efficient in both the technical and pure technical efficiency scores, it is 

operating at the most productive scale size. On the other hand, if a farm has high pure technical efficiency 

score, but a low technical efficiency score, then, it is locally efficient but not globally efficient due to its 

scale size, while a technical efficient farm is termed to be global efficient. Thus, it is reasonable to 

characterize the scale efficiency of a DMU by the ratio of the two scores (Sarica and Or, 2007). 

However, scale inefficiency can be due to the existence of either IRS or DRS. A shortcoming of the SE 

score is that it does not indicate if a DMU is operating under IRS or DRS conditions. This problem is 

resolvable by solving a non-increasing returns of scale (NIRS) DEA model, which is obtained by 

substituting the VRS constraint of λ =1 in the BCC model with λ ≤ 1. IRS and DRS can be determined by 

comparing the efficiency scores obtained by the BCC and NIRS models; so that, if the two efficiency 

scores are equal, then DRS apply, else IRS prevail. The information on whether a farmer operates at IRS, 

CRS or DRS status is particularly helpful in indicating the potential redistribution of resources between 

the farmers, thus, enables them to achieve higher output. The results of standard DEA models divide the 

DMUs into two sets of efficient and inefficient units. The inefficient units can be ranked according to 

their efficiency scores; while, DEA lacks the capacity to discriminate between efficient units. A number 

of methods are in use to enhance the discriminating capacity of DEA (Adler et al., 2002). In this study, in 

order to overcome this problem benchmarking method developed by Sexton et al., (1986) were used. In 

the case of benchmarking method, an efficient unit which is chosen as the useful target for many 

inefficient DMUs and so appears frequently in the referent sets, is highly ranked.  

Energy Saving Target Ratio (ESTR): Energy saving target ratio (ESTR) helps to determine the 

inefficiency level of energy usage, and the index used is given below: 

ESTR (%) = Energy saving target X 100 ………………………………………… (8) 

                     Actual energy input 

ESTR represents each inefficiency level of energy consumption with its value between zero and unity. A 

higher ESTR implies higher energy use inefficiency, thus, a higher energy saving amount.  

Coefficient of Multiple Determination (R
2
)  

R
2
 = 1-      (Ai – Fi)                                                                                                                                                      

                    Ai 

Where, R
2 

= coefficient of multiple determination; Ai = actual total energy input for ith farmer; and, Pi = 

Projected required total energy input for ith farmer.  

GHG Emissions  

CO2 emission coefficients of agricultural inputs were used to quantifying GHG emissions in sorghum 

production (Table 2). 

 

Table 2: GHG Emission Coefficients of Agricultural Inputs 

Items  Unit  GHG Coefficient (KgCO2eq. unit
-1

) 

Nitrogen  Kg  1.3 

P2O5 Kg  0.2 

K2O Kg  0.2 

Herbicides Kg   6.3 

 

RESULTS AND DISCUSSION 

Measuring the Efficiency of Farmers 

Results of farmers’ efficiency score distribution obtained by application of CCR and BCC models are 

shown in Figure 1. Based on findings approximately 7.8 percent (7 farmers) and 20 percent (18 farmers) 

were identified as relative efficient farmers under CRS and VRS assumptions, respectively, while about 

92.2 percent (93 farmers) and 80 percent (72 farmers) with respect to CRS and VRS were inefficient as 

their efficient scores were below 1. An efficiency score of less than 1 for CRS implies that a DMU did not 

apply the right techniques properly, while an efficiency score of less than 1 for VRS indicates that a DMU 
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is inefficient in input use i.e. there was resource wastage. Furthermore, among the efficient farmers only 7 

DMUs were identified to be fully efficient in both technical and pure technical efficiency scores, implying 

they are globally efficient and operated at the most productive scale size, while the remaining 11 pure 

technically efficient DMUs were only locally efficient, and this was due to their disadvantageous 

conditions of scale size. However, 61.2 percent and 26.7 percent, with respect to CRS and VRS, had their 

TE and PTE scores between 0.50 and 0.99. If CCR model is assumed, only 31.1 percent had an efficiency 

score of less or equal to 0.49; whereas, if BCC model is applied, approximately 7.8 percent had an 

efficiency scores of less or equal to 0.49. It is noteworthy that among the inefficient farmers, 1 DMU and 

14 DMUs with respect to CRS and VRS had their TE and PTE scores between 0.90 and 0.99, meaning 

that these DMUs should be able to produce the same level of output using their efficiency score at their 

current level of energy inputs when compared to their benchmark which are constructed from the best 

performing DMUs with similar characteristics.  

 

 
 

The summarized statistics for TE, PTE and SE are given in Table 3. The mean values for TE, PTE and SE 

were found to be 0.599, 0.778 and 0.770, respectively, and for adjustment purpose, the average farmer(s) 

with respect to TE need to increase his/her technical efficiency by 40.1 percent viz. appropriate adoption 

of required techniques to be on the frontier surface; in the case of PTE, farmer(s) need to reduce energy 

inputs consumed by approximately 22.2 percent to be on the frontier surface; while in the case of SE, 

farmer(s) need to increase their scale productivity by 23 percent viz. right input mix to be on the frontier 

surface. However, the wide variation in TE scores from 0.599 – 1.00 is an indication that virtually all the 

farmers were not fully aware of the right production techniques or did not apply them properly. Also, 

relatively low average SE score indicates the disadvantageous conditions of scale size, thus, implying that 

if all the inefficient farmers operated at the most productive scale size, 23 percent savings in energy input 

use  from different sources would be possible without affecting the productivity level.  

Return to Scale 

The BCC model includes both IRS and DRS, while NIRS model gives DRS. To determine whether a 

DMU has IRS or DRS, an additional test is required. The values of TE for both BCC and NIRS were 

calculated and their values were compared. The same values of TE for NIRS and BCC models show that 

the DMU has DRS, while different values imply that the farm has IRS. Results showed that DMU25, 

DMU56. DMU63, DMU66, DMU67, DMU68, DMU86 that were efficient under the CRS model are both 

technically and scale efficient (Appendix). The returns to scale estimation indicated that all the 

technically efficient farmers based on the CCR model were operating at CRS, showing the optimum scale 
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of their practices and for inefficient DMUs technological change is required for considerable changes in 

output. Furthermore, RTS results showed that 8 DMUs operated at CRS; 1 DMU operated at DRS, while 

81 DMUs were found to be operating at IRS (Table 4). Therefore, a proportionate increase in all inputs 

leads to more/less/constant proportionate increase in outputs; and for considerable changes in yield, 

technological changes in practices are required. The information on whether a farmer operates at IRS, 

CRS or DRS is particularly helpful in aiding potential redistribution of resources between the farmers in 

order to enable them achieve higher output. 

 

Table 3: Deciles Frequency Distribution of Efficiency Scores 

Efficiency Level TE PTE SE 

≤ 0.299 4 (4.4) 0 (0) 0 (0) 

0.300-0.399 8 (8.9) 1 (1.1) 0 (0) 

0.400-0.499 16 (17.8) 6 (6.7) 1(1.1) 

0.500-0.599 25 (27.8) 8 (8.9) 9 (10) 

0.600-0.699 16 (17.8) 18 (20.0) 21 (23.3) 

0.700-0.799 5 (5.6) 15 (16.7) 25 (27.8) 

0.800-0.899 8 (8.9) 10 (11.1) 12 (13.3) 

0.900-0.999 1(1.1) 14 (15.6) 15 (16.7) 

1.000 7 (7.8) 18 (20.0) 7 (7.8) 

Total  90 90 90 

Minimum   0.259 0.366 0.444 

Maximum  1 1 1 

Mode  1 1 1 

Mean  0.599 0.778 0.770 

STD 0.190 0.186 0.149 

Source: Computed from EMS computer print-out 

( ): percentage 

 

Table 4: Characteristics of Farms with Respect to Return to Scale 

Scale  No. of Farms Mean Energy Output  

Sub-optimal  81 11145.18 

Optimal  8 20425.65 

Super-optimal 1 16139.38 

Source: Computed from EMS computer print-out 

 

Ranking Analysis of Sorghum Farmers 

It is worthy to note that efficient farmers obviously follow good operating practices, and identifying 

efficient operating practices and their dissemination will help to improve efficiency not only in the case of 

inefficient farmers but also for relatively efficient ones. However, among the efficient farmers, some 

DMUs showed better operating practices than others, as such there is need to make discrimination among 

the efficient farmers while seeking the best operating practices. These efficient DMUs can be selected by 

inefficient DMUs as best practice DMUs, making them a composite DMU instead of using a single DMU 

as a benchmark. In order to have the efficient farmers ranked, the number of times an efficient DMU 

appears in a referent set was counted (Table 5). Only efficient DMUs serve as peers for the inefficient 

DMUs, and in this instance DMUs 11-16, 25-53, 56-62, 63-66, 67-68, 72-74 and 19 are the efficient 

peers. However, DMU56 appears forty eight times in the reference set of inefficient DMUs, thus, placing 

it closest to the input and output levels of most of the inefficient DMUs, because it had the most optimum 

inputs used. Therefore, DMUs with zero peer counts are advised to emulate these best practice DMU if 

they their objective is to be technical and scale efficient. While the referent set is composed of the 

efficient units which are similar to the input and output levels of inefficient units, efficient DMUs with 
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more appearance in referent set are known as superior unit/spark plug in the ranking. These superior 

units/spark plugs can be use as reference means of dissemination of farm improvement by extension 

delivery service agents. It is noteworthy that results of this analysis would be beneficial to inefficient 

farmers to manage their energy sources usage in order to attain the best performance of energy use 

efficiency.  

 

Table 5: Benchmarking of Efficient DMUs 

DMU (Farm) Frequency in 

Referent Set  

Ranking  DMU (Farm) Frequency in 

Referent Set 

Ranking  

DMU56 48 1 DMU74 7 8 

DMU25 45 2 DMU63 4 9 

DMU11 43 3 DMU72 3 10 

DMU67 35 4 DMU66 2 11 

DMU86 19 5 DMU62 2 11 

DMU53 12 6 DMU68 1 12 

DMU16 11 7    

Source: Computed from EMS computer print-out 

 

Performance Assessment of Efficient Farms Using Weight 

Performance assessment can be carried out by comparing a particular system with key competitors having 

best performance within the same group or another group performing similar functions, and this process is 

called benchmarking (Jebaraj and Iniyan, 2006). Efficient DMUs can be selected by inefficient DMUs as 

best practice DMUs, making them a composite DMU instead of using a single DMU as a benchmark. A 

composite DMU is formed by multiplying the intensity vector   in the inputs and outputs of the respective 

efficient DMUs. BCC is modeled by setting the convexity constraint and the summation of all intensity 

vectors in a benchmark DMU must be equal to 1. Results in Table 6 show the worst inefficient DMUs 

(DMU01 and DMU40) and the best inefficient DMUs (DMU21and DMU60). For instance, in the case of 

DMU01 the composite DMU that represents the best practice or reference composite benchmark DMU is 

formed by the combination of DMU56, DMU67 and DMU11. This means DMU01 is close to the 

efficient frontier segment formed by these efficient DMUs represented in the composite DMU. The 

selection of these efficient DMUs is made on the basis of their comparable level of inputs and output to 

DMU01. However, the benchmark DMU for DMU01 is expressed as 56(0.602) 67(0.197) 11(0.201), 

where 56, 67 and 11 are the DMU numbers while the values between the brackets are the intensity vector 

  for the respective DMUs. The higher value of the intensity vector   for DMU67 (0.472) indicates that 

its level of inputs and output is closer to DMU40 when compared to other DMUs in the composite set. 

 

Table 6: Performance Assessment of Farms 

DMU (Farm) PTE Score (%) Benchmarks  

DMU01 36.6 56(0.602) 67(0.197) 11(0.201) 

DMU40 40.0 67(0.472) 56(0.342) 25(0.144) 11(0.042) 

DMU21 97.0 56(0.044) 25(0.837) 74(0.119)  

DMU60 97.1 25(0.069) 11(0.713) 67(0.219) 

Source: Computed from EMS computer print-out 

 

Optimum Energy Requirement and Saving Energy 

The optimum energy requirement and saving energy of various inputs for sorghum production using BCC 

model are presented in Table 7. It gives the average energy usage in optimum conditions (MJha
-1

), 

possible energy savings and ESTR percentage for different energy sources. Results showed that the total 

actual energy requirement for sorghum production was 2955.42MJha
- 1

, and could be reduced to 

1946.07MJha
-1

; while, maintaining the present production level and also assuming no other constraining 
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factors. Estimated required energy inputs from nitrogen, herbicides, family labour and P2O5 are 1201.53, 

311.27, 134.09 and 110.03 MJha
-1

, respectively. Moreover, required energy inputs from hired labour, K2O 

and seed are 95.41, 66.41 and 27.33 MJha
-1

, respectively. 

The ESTR results showed that if all farmers operated efficiently, reduction in herbicides, family labour 

and seeds energy inputs, with respect, by 45.28%, 40.04% and 35.77% would have been possible without 

affecting the productivity level. Energy inputs viz. family labour, herbicides and seeds had the highest 

inefficiency which owed mainly to inadequate technical know-how in their application which results in 

excess use. High herbicides energy input percentage can be due to low literacy level of farmers which 

inhibit their ability to comprehend instructions on its application; poor extension service delivery and low 

prices of this input. Also, high percentage of family labour and seed energy inputs can be attributed to 

subsistence nature of farming which relies heavily on farm family labour and seeds from their previous 

harvests which are free and in abundance, and in most cases are not channeled into alternative purpose. 

Accurate management of family labour and seeds by increasing their efficiency in sorghum production 

and absorbing excess labour into alternative ventures, and loss reduction by improving management 

practices can improve energy use. 

 

Table 7: Energy Saving (MJha
-1

) from Different Sources 

Input  Actual Energy Used 

(MJha
-1

) 

Optimum Energy 

Requirement (MJha
-1

)  

Energy Saving  ESTR (%) 

Family labour 223.62 134.09 89.53 40.04 

Human labour  138.33 95.41 42.92 31.03 

Seed  42.55 27.33 15.22 35.77 

Nitrogen  1728.28 1201.53 526.75 30.48 

P2O5 158.28 110.03 48.25 30.48 

K2O 95.54 66.41 29.13 30.49 

Herbicides  568.82 311.27 257.55 45.28 

Total energy input 2955.42 1946.07 1009.35 34.15 

R
2
 = 0.7996 

Source: Computed from EMS computer print-out 

 

However, the ESTR for hired labour, nitrogen, P2O5 and K2O fertilizers were found to be 31.03%, 

30.48%, 30.48% and 30.49%, respectively; indicating that these inputs were fairly efficiently used by the 

farmers in the studied area. High efficiency observed for hired labour is because little of this kind of 

labour is employed due to abundance of free family labour and in some cases sort temporary if need arise; 

while the efficiency observed for inorganic fertilizer is associated to the hike in its price which is due to 

cost push inflation, subsidy removal and arbitral currency devaluation which affect cost of importation of 

stereotype fertilizer which are mostly used in the study area.  Sadiq et al., (2015) reported similar results 

in their studies on energy optimization in maize production in Niger State of Nigeria, while contrary 

results were reported in literature by Singh et al., (2004) for wheat production in Punjab of India and 

Ranji et al., (2013) for rice production in Mazandaran Province of Iran, respectively. 

Furthermore, the ESTR percentage for total energy input was 34.14%, indicating that by adopting the 

recommendations obtained from this study, on average; approximately 34.14% equivalent to 1009.35 

MJha
-1

 from total input energy in sorghum production could be saved without affecting productivity level. 

Singh et al., (2004) reported that 15.9% (11305 MJha
-1

) from total energy input for wheat production 

could be saved without affecting the yield level. In another study, the total energy saving reported by 

Chauhan et al., (2006) was 1094 MJ ha
-1

 for rice production in West Bengal, India. In the same vein, 

Ranji et al., (2013) found that approximately 7.47% (4.57 GJha
-1

) of overall energy resource used in rice 

production in Mazandaran Province of Iran could be reduced if all of the farmers operate efficiently. Also, 

Sadiq et al., (2015) reported that about 32.62% equivalent to 768.89MJha
-1

 of total energy input 

consumed in maize production in Niger State of Nigeria could be saved if the farmers adopted the 
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recommendations resulted from their study. Using this information, it is possible to advise the inefficient 

farmers regarding the better operating practices followed by his peers in order to reduce the input energy 

levels to the optimum values indicated in the analysis while maintaining the present output level achieved. 

Distribution of saving energy from different sources for sorghum production is shown in Figure 2. It is 

evident that Nitrogen fertilizer (52.19%) accounted for the maximum contribution to the total saving 

energy. However, summarized information showed agrochemical (biological) energy input contributed 

85.37% to the total saving energy while industrial energy accounted for 14.63%. This is consistent with 

the result of studies conducted by Sadiq et al., (2015) who reported that biological energy input had the 

highest potential for improving energy productivity in maize production. This justifies the previous 

studies by Sadiq (2015) who reported that non-renewable energy (nitrogen fertilizer and biocides) was the 

highest energy input consumed in cereal production in Niger State of Nigeria, and excessive usage of 

these chemical energy inputs in agriculture may create serious environmental consequences such as high 

nitrogen deposit in the environment and receiving H2O, poor H2O quality, carbon emission and 

contamination of the food chain. From the foregoing results it is strongly suggested that improving the 

usage pattern of these inputs be considered as priorities in providing significant improvement in energy 

productivity for sorghum production in the studied area. Improving energy use efficiency of human 

labour at farm level properly and creating enabling industrial environment to absorb excess labour would 

minimize wastages by inefficient farmers. Also, adopting better management technique, employing 

conservation tillage mulching technique and controlling input usage by performance monitoring can help 

to reduce the fertilizer and biocide energy inputs, thus, minimize their environmental impacts. Integrating 

legume into the crop rotation, application of composts, chopped residues, cultural and biological 

techniques for weed management and other soil amendments may increases soil fertility in the medium 

term, thereby reduce the need for chemical fertilizer energy inputs. 

 

 
      

Improvement of Energy Indices 

The energy indices for sorghum production in actual and optimum energy use are presented in Table 8. It 

is obvious that by optimization of energy use, both the energy ratio and energy productivity indicators can 

improve by 51.85% and 50% respectively. Also, in optimum consumption of energy resources, the net 

energy indicator improvement by 11.20% would increase to 10021.55MJha
-1

. However, the percentages 

of difference for specific, industrial, biological, direct, indirect, renewable non-renewable, commercial 

and non-commercial  energies were -34.16%, -36.51%, -33.78%, -36.59%, -33.81%, -36.51%, -33.67% 

and -42.60% respectively, meaning that by optimization, these energy inputs would be reduced. 

8.87% 
4.25% 1.51% 

52.19% 
4.78% 

2.88% 

25.52% 

Figure 2: % Distribution of saving energy from different sources 

Family labour 

hired labour 

Seed 
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P2O5 

K2O 
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Moreover, by optimization process the total energy input consumed in sorghum production would reduce 

by 34.15% which translate into 1946.07MJha
-1

. In summary, sorghum is a crop with relatively high 

requirements for non-renewable energy resources; its fertilizer energy requirement is high and it needs a 

high amount of biocide energy input. And these can be due to the facts that most farmers in the studied 

area don’t have adequate knowledge on efficient input use and there is a common belief that increase use 

of energy resources will increase their productivity. 

 

Table 8: Improvement of Energy Indices for Sorghum Production 

Items  Unit Qty in Actual Use 

(A) 

Qty in Optimum 

Use (B) 

Difference (%) 

{(B-A/A)}*100 

Energy ratio - 4.05 6.15 51.85 

Energy productivity KgMJ
-1

 0.28 0.42 50 

Specific energy  MJKg
-1

 3.63 2.39 -34.16 

Net energy  MJha
-1

 9012.2 10021.55 11.20 

Industrial energy  MJha
-1

 404.50 256.83 -36.51 

Biological energy MJha
-1

 2550.92 1689.24 -33.78 

Direct energy  MJha
-1

 361.95 229.50 -36.59 

Indirect energy  MJha
-1

 2593.47 1716.57 -33.81 

Renewable energy  MJha
-1

 404.50 256.83 -36.51 

Non-renewable energy  MJha
-1

 2550.92 1689.24 -33.78 

Commercial energy MJha
-1

 2731.80 1811.98 -33.67 

Non-commercial 

energy 

MJha
-1

 233.62 134.09 -42.60 

Agro-chemical % 21.32 86.80 307.13 

Total input energy  MJha
-1

 2955.42 1946.07 -34.15 

Source: Computed from EMS computer print-out 

 

Comparing Input Use Pattern of Efficient and Inefficient Farmers 

The quantity of source wise physical inputs and output for efficient and inefficient farmers are shown in 

Table 9. The results showed that all energy inputs used by efficient farmers were less than that of 

inefficient ones. In summary the total energy input consumed in sorghum production by efficient units 

was lower than that of inefficient units. However, the energy inputs with highest difference were seeds 

and family labour; seeds and family labour energy inputs used by inefficient farmers were 27.85% and 

27.84% higher than that of efficient units.  

Excess of these energy inputs usages was because they are free and coupled with inadequate technical 

know-how resulting in wastage. Therefore, inefficient farmers should channel these excess into 

alternative uses, for example, excess family labour should be invested in alternative income generating 

ventures. Furthermore, total energy output and productivity of the inefficient farmers were found to be 

lower than that of efficient farmers.  

Comparing Energy Indices of Efficient and Inefficient Farmers  
The energy indices of efficient and inefficient units for sorghum production are presented in Table 10. 

Energy use efficiency of inefficient units was lower than that of efficient units, with approximate 

difference of 39.47%.   Also, energy productivity, net energy, agrochemical energy ratio, of inefficient 

units was less than that of efficient units by approximately 38.46%, 20.95% and 283.02% respectively. 

However, the percentage difference for specific, industrial, biological, direct, indirect, renewable, non-

renewable, commercial, non-commercial and total input energy were found to be higher than that of 

efficient units. Therefore, optimization of energy consumption using DEA would reduce energy wastages 

by inefficient units.  
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Table 9: Comparing Input Use Pattern of Efficient and Inefficient Sorghum Farmers 

Item  Inefficient Farms (A) Efficient Farms (B) Difference (%) [(A-

B)/A]*100 

a. Inputs     

Family labour 236.80 170.88 27.84 

Human labour 143.63 117.13 18.45 

Seed  45.06 32.51 27.85 

Nitrogen  1802.64 1430.88 20.63 

P2O5 165.09 131.04 20.63 

K2O 99.65 79.10 20.62 

Herbicides  593.13 471.59 20.49 

Total input energy  3086 2433.08 21.16 

b. Output     

Yield (kg) 798.36 877.20 -9.88 

Total output energy 11735.84 12894.76 -9.88 

Source: Computed from EMS computer print-out 

 

Table 10: Comparing Energy Indices of Efficient and Inefficient Units 

Items  Unit Inefficient Farms 

(A) 

Efficient Farms (B) Difference (%) 

[(A-B)/A]*100 

Energy ratio - 3.80 5.30 -39.47 

Energy productivity KgMJ
-1

 0.26 0.36 -38.46 

Specific energy  MJKg
-1

 3.87 2.77 28.42 

Net energy  MJha
-1

 8649.84 10461.68 -20.95 

Industrial energy  MJha
-1

 425.49 320.52 24.67 

Biological energy MJha
-1

 2660.51 2112.56 20.60 

Direct energy  MJha
-1

 380.43 288.01 24.29 

Indirect energy  MJha
-1

 2705.57 2145.07 20.72 

Renewable energy  MJha
-1

 425.49 320.52 24.67 

Non-renewable energy  MJha
-1

 2660.51 2112.56 20.60 

Commercial energy MJha
-1

 28489.20 2262.2 20.60 

Non-commercial 

energy 

MJha
-1

 236.80 170.88 27.84 

Agro-chemical % 22.76 86.83 -283.02 

Total input energy  MJha
-1

 3086 2433.08 21.16 

Total output energy  MJha
-1

 11735.84 12894.76 -9.88 

Productivity  Kgha
-1

 798.36 877.20 -9.88 

Source: Computed from EMS computer print-out 

 

GHG Emissions of Efficient and Inefficient Units 

The quantity of GHG emissions of efficient and inefficient farmers are shown in Table 11. The results 

indicated the GHG emissions of efficient and inefficient producers were 47.29 KgCO2eq h
-1

 and 59.12 

KgCO2eqha
-1

, respectively. It is evident that the total GHG emission of efficient units was less than of 

inefficient farmers by about 20.01% (11.83 KgCO2eqha
-1

). However, the GHG emission differences for all 

the inputs except K2O were almost the same. Therefore, substitution of inorganic fertilizer with organic 

fertilizer, soil amendments, and application of cultural and biological controls to reduction of spraying 

operations is a major solution to agrochemical reduction.  
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Table 11: Comparison of GHG Emission for Inefficient and Efficient Units 

Input  Inefficient 

(KgCO2ha
-1

) (A) 

Efficient   

(KgCO2ha
-1

) 

(B) 

Diff. 

(KgCO2ha
-1

) 

Difference (%) 

[(A-B)/A]*100 

Nitrogen 38.68 30.69 7.99 20.66 

P2O5 2.97 2.36 0.61 20.54 

K2O 1.78 1.77 0.01 0.56 

Herbicides  15.69 12.47 3.22 20.52 

Total GHG emission 59.12 47.29 11.83 20.01 

Source: Computed from EMS computer print-out 

 

The amount of each input for efficient and inefficient units from GHG emissions point of view is shown 

in Figure 3. The graphical illustration show GHG emissions of nitrogen fertilizer to be highest followed 

by herbicides then P2O and K2O fertilizers for both cases. It can be inferred that nitrogen consumption of 

inefficient units was higher than that of efficient units. However, the main inputs of GHG creator were 

identical for efficient and inefficient units. Therefore, consumption of nitrogen fertilizer and herbicides 

should be reduced in all units. Also, P2O5 and K2O consumption of inefficient units should be decreased 

according to the above-mentioned suggestions. 

 

 
 

Conclusion and Recommendations  

The methodologies presented in this research demonstrate how energy use efficiency in sorghum 

production may improve by applying appropriate operational management tools to assess the performance 

of farmers. These methodologies helped to identify the impact of energy use from different inputs on 

output, measure efficiency scores of farmers, segregate efficient farmers from inefficient farmers and find 

the wasteful uses of energy by inefficient farmers. Results of DEA application indicated that there were 

substantial production inefficiencies among the farmers; so that, potential of approximately 21.16% 

reduction in total energy input use may be achieved if all farmers operated efficiently and assuming no 

other constraints on this adjustment. On an average, considerable savings in energy inputs may be 

obtained by adopting the best practices of high-performing ones in sorghum production process. 

Moreover, sorghum production in the studied area showed high sensitivity to non-renewable energy 

sources which may result in environmental deterioration and rapid rate of depletion of these energetic 

resources. The average yield of sorghum output for efficient and inefficient farmers were 877.20 Kgha
-1
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and 798.36 Kgha
-1

, respectively, indicating 9.88% yield decline in sorghum output of inefficient units.  

Furthermore, comparative results of GHG emissions for efficient units and inefficient units revealed the 

amount of CO2 emissions in efficient units was less than that of inefficient units by 20.01% equivalent 

value of 11.83 KgCO2eqha
-1

. 

Adoption of more energy-efficient cultivation systems would help in energy conservation and better 

resource allocation. Some strategies such as providing better extension and training programs for farmers 

and use of advanced technologies should be developed in order to increase the energy efficiency of 

sorghum production in the studied area. The farmers should be trained with regard to the optimal use of 

inputs, especially, fertilizers and herbicides as well as employing the new production technologies i.e. 

development of renewable energy usage technologies, applying better management techniques, 

employing the conservation tillage and mulching techniques, use of nitrification inhibitors like neem-

coated urea, utilization of alternative sources of energy such as organic fertilizers are suggested to reduce 

the environmental footprints of energy inputs and to obtain sustainable food production systems. 

Therefore, policies should emphasize on development of new technologies to substitute agrochemical 

with renewable energy sources aimed at efficient energy use and lowering environmental footprints. Also, 

policy on ban of stereotype agrochemical should be enacted thereby protecting the abiotic and biotic 

environment. Agricultural institutions in the studied area have an important role in establishing efficient 

energy and environmentally healthy sorghum production in the state i.e. research and extension activities 

should aim at reducing or cut down the emission of greenhouse gases. This may be achieved by altering 

some existing practices, adopting new technologies and learning from the experiences of other countries. 

For this purpose, people are to be educated and motivated, supplemented with regulatory measures taken 

by appropriate authorities. 
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