
International Journal of Applied Engineering and Technology ISSN: 2277-212X (Online)
An Online International Journal Available at http://www.cibtech.org/jet.htm
2012 Vol. 2 (1) January-March, pp114-119/Saxena et al.
Research Article

114

AN ALGORITHMIC APPROACH AND COMPARATIVE ANALYSIS OF
TASK ASSIGNMENT TO PROCESSOR FOR ACHIEVING TIME

EFFICIENCY IN PROCESS COMPLETION
*Pankaj Saxena1, Kapil Govil2, Gaurav Saxena3, Saurabh Kumar4 and Neha Agrawal5

1Teerthanker Mahaveer University, Moradabad (U.P.)
2Teerthanker Mahaveer University, Moradabad (U.P.)

3Maharaja Agrasen Mahavidyalaya, Bareilly (U.P.)
4,5Future Institute of Engineering and Technology, Bareilly (U.P.)

*Author for Correspondence

ABSTRACT
Task assignment in a distributed manner enhances the distributive nature of the system and thus improves
system performance. Matching the task with machines and scheduling task execution on the assigned
machines is an aspect of task allocation. The task allocation in a distributed computing system finds
extensive applications in the area where large amount of data is to be processed in relatively short period
of time. This paper emphasis the problem of task allocation in a distributed computing environment by
developing an algorithm which calculates the optimal time results in a distributed manner and thus
improves the system reliability. Task allocation is an essential phase in the distributed computing
systems. Task allocation to balance the load on multi computers is a challenge due to the autonomy of the
processor and the interprocessor communication overhead incurred in the collection of state information,
communication delays, redistribution of load...Etc. Task allocation algorithms can be of two basic
categories-static and dynamic. static task allocation take decisions for assignment of task to processor
based on the average estimated values of process execution times and communication delays at compile
time where dynamic task allocation algorithms are adaptive to the changing scenario and take the
decision at run time. The problem of task assignment in heterogeneous computing system has been
studied for many years with many variations. In distributed computing the schedule by which task are
assigned to processor is critical to minimize the execution time of the application. However the problem
of discovering the schedule that gives the minimum execution time is NP-complete. The main advantage
for considering DCS are higher throughput, improved availability and better access to a widely
communicated area of information.

Keywords: Distributed Computing System (DCS), Task Allocation, Throughput.

INTRODUCTION
In DCS processors are connected together through a communication network. The term distributed
computing system is used to describe whenever there are several computers interconnected in some
fashion so that a program or procedure running on system with multiple processors. However the term has
different meanings with regard to different systems because processors can be interconnected in so many
ways for various reasons. In the most general form, the word distributed implies that the processors are in
geographically separate locations. DCS gives higher throughput and improved availability. A Distributed
Computing System (DCS) is a network of workstations, personal computers and/or other computing
systems. A DCS accepts tasks from users and executes different modules of these tasks on various nodes
of the system. The objective of Distributed Computing is to obtain higher execution speed in comparison
to the one obtainable with uniprocessor system by exploiting the collaboration of multiple computing
nodes interconnected. Distributed computing system (DCS) concurrently process an application program
by employing multiple processors. It not only provide the facility for utilizing remote computer resources
or data not existing in local computer systems but also minimize the system cost by providing the facility
for parallel processing. To fulfill the requirement of faster computation, one approach is to use distributed

International Journal of Applied Engineering and Technology ISSN: 2277-212X (Online)
An Online International Journal Available at http://www.cibtech.org/jet.htm
2012 Vol. 2 (1) January-March, pp114-119/Saxena et al.
Research Article

115

computing system. An interesting problem in DCS is the task allocation. The problem deals with finding
an optimal allocation of tasks to the processor so that the execution cost and communication cost can be
minimized. Task allocation is the process of partitioning a set of programming modules into a number of
processing groups. Task allocation is a common problem in many different applications. However, there
is no algorithm that can solve this problem exactly, so finding optimal solution in a reasonable time, for
any large configuration of jobs is needed. An efficient approach is to partition a uniprocessor computing
load into multiple units of execution and assigning them to the various processing nodes. The best
possible speed up will obviously be obtained if the various partitions of the given computational task can
run independently but in parallel. Various partitions of the task collaborate to achieve a common
objective. The processing nodes of the system must be sharing the computational load and the processing
nodes must be made busy as much as possible by receiving and executing multiple tasks. There are many
ways by which the Allocation of tasks in a DCS may be done. Static task scheduling takes place during
compile time before running the parallel application. In static scheduling algorithms, all information
needed for scheduling must be known in advance. There are several techniques to estimate such
information. Static task assigning is related to compile time. Round Robin, Random, Central Manager and
Threshold are some load balancing algorithms which are static in nature. In DCS the allocation policy
depends upon the time at which the allocation decisions are made. Static allocation techniques can be
applied to the large set of real word applications. This research paper is an effort to identify a better way
of distributing the computational load across the processing nodes to achieve higher system throughput in
terms of number of tasks executed per unit time. Dynamic scheduling of tasks is related to run time.
Objective
The objective of present research paper is to give a new technique to assign the different task on processor
and to balance the load for getting the work done in minimum possible time duration in a distributed
network of many processors where each processor accomplishes the task to get the optimal results more
quickly as well as more efficiently task allocation problem is an important problem where the number of
tasks is more then the number of processors. The type of assigning task to the processor is static in nature.

MATERIALS AND METHODS
For adopting any technique firstly it is must to understand the problem clearly. The problem is how to
allocate the tasks to the processor for getting the time efficiency. In this scenario we have fixed number of
tasks and fixed number of processors. Number of tasks are more then the number of processors. Our
objective is to achieve the results in minimum possible time. We use the technique which is based on
permutation. We calculate the total number of ways by which we can complete all the tasks. Now we
determine the maximum number of tasks which can be allocated to a single processor by making sure that
no processor will be empty. Now the tasks with maximum number of files have been allocated to the
processor which will take the minimum completion time. In a similar manner we will allocate all the tasks
to the processor and will calculate the total time to finish all the tasks.
ALGORITHM
Start Algo

Step1: Read the number of tasks in n.
Step2: Read the number of processor in r.
Step3: Choose the tasks which have maximum number of files.
Step4: Find out the processor which takes minimum time to complete the task.
Step5: Allocate the tasks in step3 to the processor selected in step4.
Step6: Calculate the time taken by the selected processor to complete the task in step3.
Step7: Repeat the procedure from step1 to step 6 while (all the tasks! =allocated)
Step8: Calculate the total time to finish all the tasks.
End Algo

International Journal of Applied Engineering and Technology ISSN: 2277-212X (Online)
An Online International Journal Available at http://www.cibtech.org/jet.htm
2012 Vol. 2 (1) January-March, pp114-119/Saxena et al.
Research Article

116

IMPLEMENTATION
Let we have four processors and six tasks.

Processor P1 takes 5 seconds.
Processor P2 takes 4 seconds.
Processor P3 takes 6 seconds.
Processor P4 takes 8 seconds.

Diagrammatically it can be shown by the following way-

Figure 1: Task Allocation

It is considered that-

Task T1 has 4 files.
Task T2 has 3 files.
Task T3 has 2 files.
Task T4 has 1 file.
Task T5 has 5 files.
Task T6 has 6 files.

Every processor must be engage for balancing the load so if we allocate 3 tasks to any single processor
then rest of the 3 tasks can be allocated to other 3 processor as we are using total 4 processor. There are
total 6 tasks and utilization of all the processors is must so,

Maximum number of tasks can be done by a processor=3

All the tasks can be done by all the processors = 6 p

4 Number of ways
 =6! / (6-4)!
 =360 Number of ways

Since we want that that processing of all the task must be done in minimum time period so we will choose
the tasks which has maximum number of files and will allocate to that processor which takes minimum
time for task completion.
So we will take the tasks T1, T5, and T6 at processor P2.

So, total time taken by processor P2 to complete the tasks T1, T5 and T6= (4+5+6)*4 Seconds
 =15*4 Seconds
 =60 Seconds
 =1 Minute

International Journal of Applied Engineering and Technology ISSN: 2277-212X (Online)
An Online International Journal Available at http://www.cibtech.org/jet.htm
2012 Vol. 2 (1) January-March, pp114-119/Saxena et al.
Research Article

117

Similarly,

Total time taken by processor P4 to complete the task T4= (1*8) Seconds
 =8 Seconds
Total time taken by processor P3 to complete the task T3= (2*6) Seconds
 =12 Seconds
Total time taken by processor P1 to complete the task T2= (3*5) Seconds
 = 15 Seconds
Total time= (8+12+15) Seconds
 =35 Seconds

So, Total time taken to finish all the tasks by involving all processors =1 Min+35 Seconds
 = 1 Min 35 Seconds or (95 Seconds)
COMPARATIVE STUDY
Following are given the two tables namely Table 1 and Table 2. Task can be assigned to the processor in
two ways, first one is static and second one is dynamically or at run time. Table 1 show the comparison
based on some issues like preemption, thrashing, predictability and many others. By this table some pros
and cons of dynamic as well as static allocation of task to processor can also be calculated

Table2 shows a comparative and analytical study of different load balancing algorithms such as threshold,
round robin, central queue and random. This table focuses on several issues like fault tolerant, process
migration.Etc.by this table different issues to balance the load on processor can be observed by different
algorithmic views.
Static Vs Dynamic Task Assignment: Comparative Analysis

Table 1: Task Assignment

S.
No.

Static Task
Assignment

Dynamic Task
Assignment

1. Compile time task
assignment

Run time task
assignment

2. No preemption Preemptive as well as
non preemptive

3. Better predictability Not much predictable

4. Shows less
reliability

Greater reliability

5. It does not involves
processor thrashing

Substantial processor
thrashing

International Journal of Applied Engineering and Technology ISSN: 2277-212X (Online)
An Online International Journal Available at http://www.cibtech.org/jet.htm
2012 Vol. 2 (1) January-March, pp114-119/Saxena et al.
Research Article

118

Load balancing algorithms: Comparative study

Table 2: Load Balancing

Sr.
No.

Threshold Round Robin Central Queue Random

1. It does not
include overload
rejection

Not include
overload rejection

It includes overload
rejection

No overload
rejection

2. Includes no fault
tolerant

No fault tolerant Includes fault tolerant No fault
tolerant

3. Includes no
process
migration

Not include
process migration

Not include process
migration

No process
migration

4. Static in nature static Dynamic in nature Static
5. Decentralized in

nature
decentralized centralized Decentralized

Conclusion
As conclusion gives the result of the objective in any kind of research. In the present research paper this
part shows us that how we can use the permutative approach in making of any task allocation algorithm
and can increase the parallelism as well as the throughput of the entire system in a minimal time. The
results are also compared with other time based allocation algorithms to check the comparative results.
This paper gives an easy and efficient approach of scheduling tasks to processor.

REFERENCES
Benoita A, Casanovab H, Rehn-sonigoc V and Roberta V (2011). Resource allocation for multiple
concurrent in-network stream-processing applications. Journal of parallel computing 37(8) 331-348.
Mohammad I.daoud, Nawwaf kharma (2008). A high performance algorithm for static task scheduling
in heterogeneous distributed computing systems. Journal of parallel and distributed computing 68(4)
399-409.
Parag C pendharkar (2011). A multi agent memetic algorithm approach for distributed object
allocation. Journal of computational science 21 (4) 353-364.
Murat sensoya, Wamberto, W.vasconcelosa, Timothy, J.normana, Katia sycaraa (2012).Reasoning
support for flexible task resourcing. Journal of expert system with applications 39 (2)1998-2010.
Nirmeen A.bahnasawyb, Fatma omaraa, Magdy A.koutbb, Mervat mosab (2011) .Optimization
procedure for algorithm of task scheduling in high performance heterogeneous distributed computing
system. Egyptian informatics journal12 (3) 219-229.
Reakook hwanga, Mitsuo genb, Hiroshi katakana (2008).A comparison of multiprocessor task
scheduling algorithms with communication cost. Journal of computers and operation research 35 (03)
976-993.
Kwangsik shin, Myongjin cha, Munsuck jang, Jinha jung, Wanoh yoon, Sang choi (2008). Task
scheduling algorithm using minimized duplications in homogeneous systems. Journal of parallel and
distributed computing 68(08)1146-1156.
Fatma A.omaraa, Mona M.arafab (2010).Genetic algorithms for task scheduling problem. Journal of
parallel and distributed computing 70(01) 13-22.
P.chitra, R.rajaram, P.venkatesh (2011).Application and comparison of hybrid evolutionary
multiobjective optimization algorithms for solving task scheduling problem on heterogeneous systems.
Research article on applied soft computing11 (02) 2725-2734.

International Journal of Applied Engineering and Technology ISSN: 2277-212X (Online)
An Online International Journal Available at http://www.cibtech.org/jet.htm
2012 Vol. 2 (1) January-March, pp114-119/Saxena et al.
Research Article

119

Zhiao shi, Jack j.dongarra (2006). Scheduling workflow applications on processors with different
capabilities. Research article on future generation computer systems 22(06) 665-675.

