Research Article

Effect of Yeast Culture and Probiotic Feeding On Growth Performance of Osmanabadi Kids

SB Adangale, UY Bhoite and *AT Lokhnade

Department of Animal Science and Dairy Science Mahatma Phule Krishi Vidyapeeth, Rahuri-413 722 (MS) *Author for Correspondence

ABSTRACT

Eighteen weaned Osmanabadi kids with similar age and body weights have been exposed to three different treatments having 6 kids in each treatment. Three diets with or without probiotic were fed as T_0 (control) Dashrath grass (0.5kg) + Jowar kadbi (Adlib) + concentrate as per requirement, T_1 Dashrath grass (0.5kg) + Jowar kadbi (Adlib) + 0.025% *Lactobacillus acidophilus* + 0.025% yeast *Saccharomyces cerevisiae*, T_2 Dashrath grass (0.5kg) + Jowar kadbi (Adlib) + 0.025% *Lactobacillus acidophilus* + 0.05% yeast *Saccharomyces cerevisiae*. The kids subjected to different groups were fed for the periods of 91 days including last 7 days as digestion trial. The DMI intake and body weight gain during the experimental period were found significantly (p<0.05) superior in T_2 treatment over T_1 and T_0 and variation between remaining groups was non-significant. Thus, feeding of yeast culture may be recommended with probiotic mixture for body weight gain in the diet of Osmanabadi kids.

Key Words: Probiotic, Yeast culture, DMI, Kids.

INTRODUCTION

Goat is considered as poor man's cow as they are reared by poor people, mostly marginal farmers and landless labourers. The term "probiotic" (a Greek word meaning "for life") was first used by Parker (1974) and he described it as 'the organisms and substances that contribute to intestinal microbial balance'. It is a live microbial feed supplement that beneficially affects the host animal by improving intestinal microbial balance. Thus, the effective micro-organisms (probiotics) culture includes strains of lactic acid bacteria (Lactobacillus acidophilus and Streptococcus) and other organisms such as yeast (Saccharomyces cerevisiae) Bacillus substilis, Bifidobacterium, Aspergillus oryzae, Torulopsis (Panda, 2002).

Most of the research workers tried either single strained or two or six strained effective micro-organism culture for the preparation of feeds. Information on effect of feeding multi-strain probiotics as feed additive on growth promoter is scanty. Hence, the present experiment was conducted.

MATERIALS AND METHODS

Eighteen weaned Osmanabadi kids with similar age and body weights were divided into three groups of 6 kids each for a period of 91 days. The kids in control group (T_0) were offered Dashrath grass (0.5 kg) + Jowar kadabi (Ad.lib) + concentrate mixture as per requirement, T_1 Dashrath grass (0.5 kg) + Jowar kadabi (Ad.lib) + concentrate mixture as per requirement + 0.025% *Lactobacillus acidophilus* + 0.025% yeast *Saccharomyces cerevisiae*, T_2 Dashrath grass (0.5 kg) + Jowar kadabi (Ad.lib) + concentrate mixture as per requirement + 0.05% *Lactobacillus acidophilus* + 0.05% yeast *Saccharomyces cerevisiae*. The weekly body weights and body measurements of individual kids were recorded in morning before offering the feed and water to the kids so as to estimate the accurate weight gain. The body measurements such as height, length, chest girth and belly girth were recorded with standard tape. The data were statistically analyzed by complete randomized design (CRD) (Federer, 1967).

RESULTS AND DISSUSION

It was observed (Table 1) that, the average DM intake per animal per day on 100 kg body weight basis under treatment T_0 , T_1 and T_2 were 2.94, 3.15 and 3.36 kg, respectively. The DMI on 100 kg weight basis by the kids under treatment T_2 was significantly (P<0.5) higher than T_0 . The differences observed in DMI under treatment T_1 and T_0 and T_2 and T_1 were non-significant. Reddy and Bhima (2003) reported that the DMI was significantly higher in sheep fed with conventional

Research Article

Fable 1: Dry matter intake per anim	al over an experimental period (kg)
--	-------------------------------------

Particulars	DM intake kg /100 kg body weight					
Treatment→ Period↓	TO	T ₁	T ₂			
P-I	2.52	2.65	2.74			
P-II	2.85	3.13	3.42			
P-III	3.45	3.68	3.93			
Average	2.94	3.15	3.36			
SE		0.100				
CD±0.5%	0.278					

Table 2: Body weight gain per animal per day (kg)

Treatment→ Period	Total body we	eight gain (kậ	g)	Daily body weight gain (kg)				
I CHUU↓	ТО	T1	Т3	ТО	T1	T3		
P-I	1.023	1.193	1.130	36.54	42.60	40.38		
P-II	1.043	1.151	1.183	37.25	41.12	42.26		
P-III	1.157	1.255	1.424	41.33	44.85	50.86		
Average	1.074	1.199	1.245	38.37	42.85	44.50		
SE±		0.011		0.421				
CD at 5%		0.032		1.166				

Table 3: Average body measurements of experimental kids (cm).

Treatment→ Period	ment \rightarrow Height		Length		Chest girth			Belly girth				
i ciiou _t	T0	T1	T3	T0	T1	T3	T0	T1	T3	T0	T1	T3
P-I	0.057	0.060	0.060	0.056	0.060	0.061	0.073	0.076	0.082	0.086	0.085	0.084
P-II	0.055	0.059	0.060	0.057	0.058	0.061	0.075	0.077	0.085	0.083	0.085	0.089
P-III	0.055	0.058	0.061	0.056	0.058	0.062	0.078	0.076	0.078	0.086	0.088	0.090
Average	0.056	0.059	0.061	0.056	0.059	0.061	0.075	0.076	0.082	0.085	0.086	0.089
SE±		0.0018		0.0022		0.0023			0.0018			
CD at 5%		0.0050	0.0060		0.0066			0.0051				

Indian Journal of Fundamental and Applied Life Sciences ISSN: 2231-6345 (Online) An Online International Journal Available at <u>http://www.cibtech.org/jls.htm</u> 2011 Vol. 1 (3) July-September, pp. 158-160/Adangale et al.

Research Article

ration than those offered complete diets which were similar to present investigation.

It was observed (Table 2) that, the average total body weight gain and daily body weight gain per animal over an experimental period under treatment T_0 , T_1 and T_2 were 1.074, 1.199 and 1.245 and 38.37, 42.85 and 44.50 kg, respectively. The total body weight gain and daily body weight gain by the kids under treatment T₂ was significantly higher than kids of treatment T_1 and T_0 groups. Williams (1989) reported that the average daily gain (ADG) was significantly higher in the lambs fed with ration containing yeast culture than control group which was in agreement with present investigation. Jenkins (2003) reported that fermentation extract probiotic product have a significant effect on lamb weight gain. Mahender et al., (2006) recorded significantly higher average daily gain in lambs on feeding ration containing yeast culture, over control group.

It is observed from Table 3 that, the daily average gain in height of lambs were 0.056, 0.059, and 0.061 cm, daily length gain 0.056, 0.059 and 0.061 cm, daily chest girth gain were 0.075, 0.076 and 0.082 cm and daily belly girth gain was 0.085, 0.086, 0.089 cm for treatment T_0 , T_1 , and T_2 respectively. The daily gain in height, length, chest girth and belly girth by kids under treatment T_2 is superior over treatment T_1 and T_0 . The differences in body measurement gain among the treatments were non-significant. Similar findings were reported by Kulkarni (1990) and Phad (1994).

REFERENCES

Federer WT (1967). Experimental design. Theory and Practice. Oxford and IBH publishing Co., Calcutta.

Jenkins TA (2003). The use of fermentation extracts in animal feeds 7th International Conference on Kyusei Nature Farming Proceedings christchurch New Zealand, 98-102.

Kulkarni BV (1990). Studies of different systems of feeding management for growth performance and carcass traits in crossbred (Beetal x Osmanabadi) goats, M.Sc. (Agri.) thesis, Marathawada Agricultural University, Parbhani (Maharashtara).

Mahender M, Prasad YLK and Reddy GVN (2006). Effect of yeast culture on growth and nutrient utilization in Nellore lambs. *Indian Journal of Animal Nutrition*, 23(1) 10-13.

Panda AK (2002). Probiotics in poultry nutrition. *Poultry Line, January, 2002, 26-27.*

Parker RB (1974). Probiotics, the other half of antibiotics story, *Animal Nutrition Health*, 29 4-8.

Phad KK (1994). Effect of methods of castration in male kids of goats on carcass characters and quality. M.Sc. (Agri.) Thesis, Marathawada Agricultural University, Parbhani (Maharashtara).

Reddy GN and Bhima B (2003). Effect of yeast culture based diet on growth and nutrient cultivation in Deoni bull calves. *Indian Journal of Animal Nutrition*, **20(1)** 101-104.

Williams PEV (1989). The mode of action of yeast culture in ruminant diets: A review of the effect on rumen fermentation patterns. Proc. of Alltech's fifth Annual Symp. on "Biotechnology in the feed industry" (Edited by T P Lyons) Alltech Technical Publications, Nicholasville, USA. Pp. 65-84.