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ABSTRACT

This paper considers the uniform parallel machine scheduling problem which is to minimize the
maximum lateness. This problem is equivalent to the uniform parallel machine scheduling problem,
which is to minimize the maximal completion time of n jobs whose release times are zero, processing
times depend on the speed of the machine to which they are assigned, and their delivery times are
different. This problem is NP-hard, even if the machines’ speeds are identical and all the delivery times
equal to zero. In this paper, a parallel GA is employed, an experimental study has been carried out to
evaluate our methods.
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INTRODUCTION

We consider the uniform parallel machine scheduling problem to minimize the maximal lateness. It is
described generally as Qm||Lmax according to the standard three parameter notation proposed by Graham
et al.(1979). Each scheduling problem is denoted by the standard three-field notation a|B|y . The first field
o describes the scheduling type, the second field B is reserved for the information and conditions of
scheduling, while the third field y contains the performance criteria. This problem is NP-hard, even if its
simpler P2||Cmax case, in which there are only 2 machines and all of the jobs have the same due date
(1977). This problem is equivalent to the uniform parallel machine problem with delivery times to
minimize the maximal completion time, i.e. Qmigj|Cmax problem. In many practical scheduling
problems, the delivery times must elapse after the jobs are processed on the machine. The delivery times
may be brought by the transportation times or the need of some special products, such as the course of
cooling for steel and iron products or the course of drying for painted products. The uniform parallel
machine scheduling problems are fundamental to numerous complex real-world applications.

Although much research has been devoted to the parallel machine scheduling problems with identical
machine speeds, little research has been done on uniform parallel machines. Koulamas and Kyparisis
(2000) showed that an extension of the EDD (Earliest Due Date first) rule to the Qmj|Lmax problem
yields a maximum lateness value does not exceed the optimal value by more than pmax, where pmax is
the maximum job processing time. They also showed that the LDT (Largest Delivery Time first) heuristic
is a (m—1)s,/2{%, s; +1-approximation algorithm for Qmigj|Cmax problem, where m is the number of the
machines, si is the speed of the i-th machine, and sl is the maximum speed. Dessouky (1998) considered
Qm|rj, pj = 1|Lmax problem, in which the job processing times are identical. He proposed six simple
heuristics, and then developed a branch-and- bound procedure which could solve the problems within 5
machines and 80 jobs within a reasonable time.

Some other papers considered the corresponding identical parallel machine scheduling problem in
which the machines have the same speed. The literature in recent years mainly focused on the problem
with unequal release dates, i.e. PmjrjlLmax problem. Carlier (1987)and Néron et al., (2008) developed
some exact branch-and-bound algorithms for the problem. Vakhania (2004) and Gharbi and Haouari
(2007) considered the development of heuristics. Mastrolilli (2003) and Carlier and Pinson (1998)
proposed some approximation algorithms. Eren (2009) considered the m-identical parallel machine
scheduling problem with a learning effect to minimize the maximum lateness. He proposed a model,
which can optimally solve the problems with 18 jobs and 4 machines within 7000 s on a personal
computer with Pentium 1VV/2 512 Ram. For the single machine with minimizing the maximum lateness,
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recent literature mainly considered some extensive problems. For example, Wu et al., (2007) considered
the single-machine maximum lateness minimization problem with a learning effect. The simulated
annealing algorithm they proposed outperforms the traditional heuristic algorithm in terms of quality and
execution time for a large number of jobs. It can solve the problems with 200 jobs within 21.24 s on a
Pentium IV personal computer. Uzsoy and Velasquez (2008) addressed the problem of scheduling a
single machine subject to family dependent set-up times in order to minimize maximum lateness. The
incomplete dynamic programming heuristic they developed can solve the problems with 50 jobs within
334.21 s on a Pentium |1, 266 MHz notebook with 64 MB of RAM.

Considering the NP-hardness of our scheduling problem, we introduce a hybrid genetic algorithm
approach to generate the near-optimal solutions with high quality.Only a few papers have focused on
parallel machine scheduling problems.

The remainder of this paper is organized as follows. In the next section, we describe Qm|Lmax
problem and Qm|gj|Cmax problem. In the third section, we consider Variable proposed parallel genetic
algorithm. The results are presented in final Section.

Problem description

The problem under consideration is the problem of scheduling uniform parallel machines so as to
minimize the maximal lateness. We are given a set of n jobs, j;, -..., ju, €ach of them has to be scheduled
without interruption on one of m machines, My,.....,M,. Machine M; (i =1, ...,m) has a speed s; (5; >
0). Without loss of generality, we assume that s; >s, > ........ > Sm,. A machine can process at most one
job at a time, and a job can run on only one machine at a time. All jobs and machines are available at time
0. If a job J; is processed on a machine Mi, it will take a positive processing time p;; and pj; = p;/s;, here
p; is the length of job J;. Each job has a distinct due date d; for j = 1,... ,n. The objective is to determine a
schedule so that the maximum lateness Ly,,x = max L 1<j<n is minimized, where L; = ¢; — d; is the
lateness and c; is the completion time of job J;. Because the objective function L, is not always positive
in Qmi||Lmax problems, the equivalent form Qm|qj|Cmax is frequently considered in the literature. Let g
= dmax — djfor all jand dpax = max d; , 1<j<n is the maximum due date (1977).

In this paper, we mainly focus on the Qm|qj|Cmax problem too. Here each job J; has a distinct positive
delivery time q; that must elapse between its completion on the machine and its exit from the system. Let
¢;denote the completion time of job J; on a machine, then for the consumers the effective completion time
C; = ¢; +q;. The objective is to minimize the largest Completion time ¢, 5= Max ¢; = max (¢; + g;). Note
that the makespan corresponds to Cpax= mMax ¢;, and it is different from the maximum completion time
here.denote that the job J; is processed on the machine M;.Cpax (J].r — My, Jj — M;) s the larger
completion time between job & and e when they are all scheduled on machine M;, and the job & is
processed before job Jj. ““Crax (J].r — M, , Jj = M;) 7" denotes the larger completion time between job Iy

and J;, when they are proposed on the machine M;- and Mrespectively. The sequence of the jobs on the
same machine forms a sub-schedule.
The Proposed Parallel Genetic Algorithm

The proposed parallel genetic algorithm involves a master scheduler, which has the processor lists and
the job queue. The processors of the distributed system are heterogeneous. The available network
resources between processors in the distributed system can vary over time.

The availability of each processor can vary over time (processors are not dedicated can may have other
jobs that partially use their resources). Jobs are indivisible, independent of all other jobs, arrive randomly,
and can be processed by any processor in the distributed system. The master scheduler runs a sequential
GA in which the fitness function evaluation alone is done by slave processors. When jobs arrive they are
placed in the unscheduled job queue. They jobs are taken in batches and scheduled. Batch schedulers are
shown to have higher performance than immediate schedulers in. When any processor is idle, the
processor asks for a job to perform and the job scheduled for that processor (if any) is given to that
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processor. All the job data are maintained only in the Synchronous master slave parallelization is used to
evaluate the fitness function alone in a distributed fashion. These are the steps in parallelization,

a) A master scheduler which is the processor in charge of scheduling chooses the slaves. This choice is
based upon the communication overhead involved and the computational potential of the slave processor.
In other words, a processor which is too slow or too remote will not be used as a slave.

b) The master has the population of chromosomes for which the fitness function is to be evaluated.

c) Each slave evaluates the fitness of a fraction (F;) of the population in the master scheduler.

d) After partitioning the population into fractions, the slave processors receive their fraction of

Chromosomes one at a time evaluate and return the result to the master. This approach is efficient
because, it limits the data transfer. In a distributed environment, the slaves may leave the system at any
time. So the chromosomes are transferred only just before the calculation is to be performed. The above
algorithm has exactly the same properties as a sequential GA, but executes faster. The Pseudo code for
the underlying sequential genetic algorithm is shown in below.

Encode the chromosome.
Initialize the population (randomize)
do {Stochastic sampling with partial replacement selection
Cycle crossover
Mutation: randomize and rebalancing}
While (stopping conditions not met)
Return best individual

Encoding the Chromosome

Each job in the batch has a unique identification number. The total number of jobs in the batch is N and
total number of processors in M. The unique identification job number of all the jobs allocated to a
processor is encoded in the chromosome with -1 being used to delimit the different processor queues.

Table 1: A sample chromosome

5 1 -1 2 -1 3 4

The sample chromosome in Table 1 has a batch size of 5 jobs with 3 processors. This chromosome
represents the following job allocation.

Table 2: Job Allocation

Processors Jobs
1 51
2 2

3 3,4

Fitness Function

A fitness function computes a single positive integer to represent how good the schedule is. We use
relative error to generate the fitness values. The fitness of each individual in the population is calculated
using synchronous master slave parallelization, in other words, by this function itself is computed by the
slave processors. Previously assigned, but unprocessed, load for each processor is considered by
calculating the finishing time of a processor j.

Cycle Crossover

Cycle crossover is a crossover operator which applies to permutation encoding schemes which need to
preserve both the allele value and the allele order of the gene. This operator ensures that, the two
offspring will have their gene values taken from the same value and position of either of their parents.
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This ensures that the properties of the parents are carried over to the children there by making fitter
children possible in table 3 and 4.

Table 3: Parents

3 4 -1 2 -1 5 1

1 -1 3 5 -1 2 4
Table 4: Children

3 4 -1 5 -1 2 1

1 -1 3 2 -1 5 4

The above example uses the randomized locus for start of the start of the cycle as the first position. The
cycle formed is 3-1-4-3.The 5 and 2 of the parents, which are not part of the cycle, are swapped to get the
resulting children.

Swapping Mutation

An individual in the population is randomly selected and any two jobs in that chromosome are randomly
selected and swapped. This approach ensures that all the solutions in the search space are more
thoroughly examined.

Stopping Conditions

A maximum of 1000 evolutions are used. The fitness values of the chromosomes obtained after 1000
evolutions did not show considerable improvement. The GA will also stop evolving if one of the
processors becomes idle, in which case it will return the best schedule found so far.

RESULTS

To illustrate the effectiveness and performance of the proposed parallel genetic algorithm (PPGA), it is
implemented in MATLAB 7 on a laptop with Pentium IV Core 2 Duo 2.53 GHz CPU. The outputs of the
PPGA are compared with that achieved by Lingo 8 software. To study the function of maximum lateness,
some example questions are randomly created, and the related results are reported in terms of the RDI in
Table 1. The relative deviation index (RDI) is used for the given problem as a common performance
measure to compare the instances. Then the results obtained from the proposed parallel genetic algorithm
are compared with the calculation of the question by GA and are analyzed.

Table 1: Comparison between GA and PPGA

Problem nxm GA PPGA
RDI CPU time RDI CPU time

1 10x5 0.16 1 0.04 0.13
2 10x10 0.18 1 0.04 0.28
3 10x20 0.19 1 0.05 0.29
4 20x5 0.36 2 0.18 0.46
5 20x10 0.38 2 0.21 0.49
6 20x20 0.44 3 0.23 0.55
7 50%5 0.33 4.23 0.28 0.68
8 50x10 0.36 5.58 0.32 0.69
9 50%20 0.37 6.12 0.38 0.75
10 100x5 0.38 8.25 0.08 0.79
11 100x10 0.48 8.85 0.04 0.86
12 100x20 0.62 9.23 0.12 1

In Table 1 the results obtained from the GA and PPGA calculation with various sizes that are
determined by n and m, where n =10, 20, 50, 100and m =5, 10, 20. For each combination of n and m, 10

389



Indian Journal of Fundamental and Applied Life Sciences ISSN: 2231-6345 (Online)

An Online International Journal Available at http://www.cibtech.org/jls.htm

2011 Vol. 1 (4) October-December, pp.386-390/Mohammad Akhshabi

Research Article

instances are randomly generated and then the relative deviation index (RDI) is used for the makespan of
the given problem as a common performance measure to compare the instances. The result shows that
PPGA has better performance compared to the GA

Conclusions

The experiments prove that the PPGA can be used to solve minimizing the maximum lateness on uniform
parallel machines effectively and the efficiency of PPGA has been perfectly shown by the expansion. In
this paper we propose a parallel genetic algorithm to solve the minimizing the maximum lateness on
uniform parallel machines effectively Problem with regard to being NP-hard, the method of parallel
genetic algorithm with the use of MATLAB 7.0 software has been developed and then the quality of the
results with their time of calculation is compared with the results obtained from GA and For other state of
production such as parallel machine series machine more researchers could done for future works. Other
Meta heuristic methods like Memetic algorithm, SA algorithm PSO algorithm could be used as well.
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