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ABSTRACT 

SOC is a critical indicator of soil quality which does stand for Soil organic carbon. There are two 

commonly used methods for estimating the spatial pattern of SOC. In this paper description of three 
methods, laboratory, field and satellite measurements are discussed. General or generic models are 

designed using a set of model parameters that are expected to provide accurate SOC estimates over large 

spatial extents. Mapping SOC directly through remote sensing may be challenging especially in locations 
where the soil surface is partially or wholly covered. All methods have pros and cons and they should be 

matched to specific measurement needs and applications before they are selected or rejected. The choice 

of an instrument or measurement techniques will depend upon the researchers’ need and resources, such 

as the project objective and funding allotted for the project. Generic models can integrate data such as 
management practices, land cover, climate and soils. 
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INTRODUCTION 

Soil organic carbon (SOC) is a critical indicator of soil quality (Lal, 2004a, b; Lal, 2009; Stevens et al., 
2008). Tan et al. (2004) argued that the spatial variation in soil quality is the result of changes in SOC 

concentration. Soil quality as a factor which is influenced by Inherent features and soil management is 

intended and will be assessed by determining soil quality indicators (Doran and Parkin, 1994). Those 

measurable soil properties that affect the capacity of the soil for crop production capabilities are called 
soil quality indicators (Arshad and Martin, 2002). Soil quality indicators are defined as processes and 

characteristics of the soils that are susceptible to soil use changes (Aparico and Costa, 2007).  

Soil quality is different in different geographical regions because of differences in climate, topography, 
parent material, vegetation and land use (Brejda et al, 2000). Different characteristics of the soil are 

considered as indicators of soil quality. A soil quality index should have the following features: 

A. Including environmental process 

B. Including physical, chemical and biological characteristics of soil 
C. Sensitive to environmental changes and management 

D. Be measurable, accessible and have quantitative processing 

For a global soil C monitoring program representing the main types of ecosystems and allowing both the 
SOC stocks and the stock changes to be estimated, several challenges remain to be solved ( Robert Jandl 

et al, 2014) : 

1. The information on SOC is geographically unbalanced. An immediate challenge is the harmonization 
of already existing regional soil monitoring programs and soil databases. 

2.  The identification of a universal metric for SOC monitoring is needed. Typically, information is 

available for the total C concentration, which is then converted to the total SOC pool. For a valid 

estimation of the SOC pool, the measurement of the soil bulk density and the content of rock fragments 
are equally important. 

3.  A standardized approach to the reported soil depth for SOC pool estimations is required. SOC can be 

unevenly distributed over varying soil depths. Existing soil C maps are often based on data that poorly 
reflect the C pool of deeper soil horizons. The effect of land use changes on deep C stocks has been 

poorly addressed. 
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4. The understanding of SOC stabilization processes is incomplete. No general agreement on soil C 

fractionation methods to estimate the degree of stabilization has been achieved. 

5.  Specific fieldwork protocols for the assessment of SOC dynamics are needed. The large spatial 
heterogeneity of SOC in comparison to its moderate temporal change calls for cost-effective sampling 

protocols in order to properly capture SOC dynamics on a landscape scale and to identify small SOC 

changes in a highly variable pool. 
6.  SOC monitoring programs need to liaise with long-term soil experiment (LTSE). LTSEs offer a 

baseline for the SOC pool and can comprise a set of sites where targeted research on soil processes and 

their impacts on soil C can be performed. They can serve as a backbone for SOC monitoring. 

7. Mechanistic SOC simulation models are expected to play an important role in monitoring programs. 
They can assist in the estimation of temporal trends in the SOC pool, but they are not yet adequate for the 

extrapolation of existing soil information over space and time. 

Development of Methods for SOC Estimation 
Rapid, accurate, and inexpensive measurement of the soil’s carbon pool is essential to detect and quantify 

change in the ecosystem dynamics of C. A comparative assessment of present determination methods is 

needed urgently to identify promising techniques that reduce uncertainty in measuring the soil’s C pool 
and flux at the farm and watershed scale. 

Ex Situ Methods 

Methods involve collecting representative soil samples and measuring the C concentration via dry or wet 

combustion techniques. The latter process involves the oxidation of organic matter by an acid mixture and 
measuring the evolved CO2 by gravimetric, titrimetric, or manometric methods. In the 19

th
 century, 

Rogers and Rogers reported that dichromate sulfuric acid solution could oxidize organic substances. After 

unsuccessful attempts by Warrington and Peake, Cameron and Breazeale, Ames and Gaither 
accomplished the higher recovery of organic substances by the dichromate-sulfuric mixture. 

Schollenberger in 1927 introduced the titrimetric determination of unused chromic acid in the oxidation 

reaction with ferrous ammonium sulfate using several indicators (diphenylamine, o-phenanthroline, or 

Nphenylanthranillic acid. Walkley and Black and Tyurin in 1934 and 1935 developed a complete 
quantification method of SOC by wet oxidation without necessitating external heating. However,  

Laboratory methods such as the Walkley and Black (1934) and the dry combustion (DC) (Nelson and 

sommers, 1982) have been the standard approaches for SOC determination. The SOC pool can also be 
quantified in situ, for example through the Inelastic Neutron Scattering (INS) method (Wielopolski et al., 

2011). 

However, determination of SOC using laboratory or field based methods may be expensive and time 
consuming especially for C inventory over large spatial extents. 

In Situ Methods 

New in situ soil C methods promise high precision without as much sample processing time and their 

subsequent analysis. In situ methods mainly are based on remote sensing and spectroscopic measurements 
in the field. Spectroscopic methods include infra-red reflectance near-infra-red (NIR) and mid-infra-red, 

laser-induced breakdown spectroscopy (LIBS) and inelastic neutron scattering (INS). Potential of these 

methods are being calibrated with reference to soil sampling and subsequent analysis with automated dry 
combustion method. 

Remote sensing exploits the fact that objects on the earth's surface reflect, absorb, and emit 

electromagnetic radiation in a different way (i.e., each object has a specific spectral response) depending 
on their molecular composition, texture, size and shape. A major limitation in most remote sensors 

especially when used to acquire information in-situ is that they provide only spectral response of objects 

on the earth's surface. However, analytical spectral devices (ASD) e.g., the Field Spec exist which may be 

used to acquire spectral reflectance of soils below the earth surface in the laboratory. Depending on the 
energy sources involved in the data acquisition, remote sensing imaging instruments may be classified as 

active (i.e. emits and detects own energy, to and from target), or passive (i.e. sun is the energy source). 

The use of passive optical remotely sensed spectral band data from the visible and near infra-red is being 
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proposed to characterize soil quality (Brick lemyer and Brown, 2010; Croft et al., 2012; McCarty et al., 

2002; Stevens et al., 2008).  

The SOC, a proxy of soil quality may be measured in the laboratory or field and upscale to cover large 
spatial extents using aerial or satellite data. This can be undertaken for example, by measuring the spectral 

reflectance of surface and sub-surface soils in the laboratory, and then developing models that relate SOC 

concentration at different depths with reflectance. These developed models can then be applied directly 
on to the satellite data to extrapolate over large spatial extents. 

Alternately, the temporal variability in crop yield may also be a useful indicator of soil quality variability 

across space and time. Validation of remotely sensed products with actual field measurements may be 

conducted through statistical analysis, for example by regression analysis or analysis of variance 
(ANOVA). If a large disagreement exists between modeled estimates and actual measurements, the 

algorithmormodel is modified and re-applied to generate another SOC estimate which is evaluated, and 

the process of model and product development repeated until satisfactory results are achieved. 

Laboratory Methods 

The Walkley and Black (1934) method is a chemical oxidation procedure for measuring SOC 

concentration. Although the Walkley– Black procedure is simple, rapid with minimal equipment needs, 
the results may vary depending on the land uses, soil depth, and soil texture (De Vos et al., 2007). 

Alternately, the weight loss on ignition method is a DC approach that gravimetrically determines SOC 

from soil samples heated in a furnace at 430 °C, for 24 h (Chatterjee et al., 2009). 

Tivet et al. (2012) demonstrated that the DC method provides less uncertainty in SOC estimates for 
different land uses and depth compared with Walkley–Black, and proposed conversion equations from 

Walkley–Black to DC. Laboratory methods such as the DC compute SOC as mass fraction by weight (g 

kg−1) (Smith and Tabatabai, 2004a). For estimating the spatial variation in SOC, it is important to 
initially determine the soil bulk density (ρb), so as to express C on volume basis (g m−2 or Mg ha−1). 

The requirement to analyze SOC and evaluate ρb is time consuming, and labor intensive (Chatterjee et 

al., 2009; Lal, 2006). 

Spectroscopic methods permit a rapid and non-destructive means for quantifying SOC with high 
precision, reduced cost and processing times (Cohen et al., 2007), although considerable sample 

preparation (collection, grinding, sieving, and drying) is still required (Stevens et al., 2008). 

Laboratory spectroscopy may be useful for calibration of aerial and satellite reflectance measurements 
(Stevens et al., 2008), and for investigating the relationship between SOC decomposition processes and 

soil reflectance. 

Field Based Methods 
The determination of SOC directly in the field may not only be cost effective, but appropriate in 

circumstances where a laboratory is not readily available (Reeves, 2010). 

Satellite Measurements 

The application of sensors mounted on satellite platforms for measuring SOC is still at its infancy (Croft 
et al., 2012). 

Although satellite derived reflectance data may provide spatially continuous SOC maps at high temporal 

resolutions, issues such as data acquisition costs, preprocessing requirements, and technical complexity 
have hampered their development (Croft et al., 2012; Hansen et al., 2008; Moran et al., 1997).In addition, 

satellite borne remote sensors only detect the surface reflectance, which is correlated to SOC. 

Other issues to contend with when determining SOC with satellite borne sensors include variable soil 
moisture for different localities, and vegetation which may obscure the remote sensors from acquiring soil 

reflectance. 

However, for cropping systems, air or space borne sensors may be used to measure the soil reflectance 

during the times of the year when the crops are absent from the field, or begun growing. 
The SOC modeled using data from optical sensors mounted on aerial platforms have yielded strong 

correlation with the ground data (Croft et al., 2012; Stevens et al., 2008). In contrast, Gomez et al. (2008) 

reported a weaker correlation between Hyperion satellite modeled SOC, and ground or laboratory 
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determined SOC, which was attributed to the low signal/noise ratio. Spectral reflectance data must be 

processed to reduce noise or errors (Moran et al., 1997). 

Generic Models for SOC Determination 
General or generic models are designed using a set of model parameters that are expected to provide 

accurate SOC estimates over large spatial extents. Mapping SOC directly through remote sensing may be 

challenging especially in locations where the soil surface is partially or wholly covered (e.g., by other 
vegetation or buildings). 

For scenarios of partial coverage of the soil surface, SOC may be modeled through a combination of field, 

remotely sensed datasets, and analyzed through a GIS. 

Examples of GIS based models for quantifying SOC at various scales include the General Ensemble 
biogeochemical Modeling System (GEMS), CENTURY, DayCent (Daily Century model), Rothamsted 

Carbon Model (RothC), and the Erosion Depositional Carbon Model (EDCM) (Liu et al., 2004a, 2011; 

Tan et al., 2009; Wielopolski et al., 2011). 
The RothC model is a soil decomposition model that requires plant productivity parameters as input 

(Coleman and Jenkinson, 1996). Generic models can integrate data such as management practices, land 

cover, climate and soils (Liu et al., 2004a, 2008; Ojima et al., 1994; Parton et al., 2004; Zhao et al., 
2010). 

The common model inputs include monthly precipitation, monthly maximum and minimum temperatures, 

soil texture, ρb, drainage, initial SOC level, water holding capacity, cropping system, cultivation, 

atmospheric N deposition, fertilization, harvesting, grazing, tree removal, land cover data, and natural 
disturbances such as erosion or fire (Dieye et al., 2012; Liu et al., 2008; Parton et al., 2004). 

The major output variables are NPP, grain yield, C decomposition, C exchange rates between ecosystems 

and atmosphere, biomass removal by harvesting, and the C pool in vegetation and soils. Generic models 
also provide the uncertainty of predicted variables in space and time (Liu et al., 2004a, 2008). 

Challenges in SOC Estimation 

Developing accurate, rapid and systematic approaches for estimating SOC over large spatial scales 

constitutes a significant challenge. For example, the requirement of a high sampling density with point 
data and the high spatial variability of ρb influence interpolation accuracy (Moran et al., 1997). 

Unlike with point data, interpolation based on remotely sensed satellite data has the advantage of 

continuity of data in space and time (Duveiller and Defourny, 2010).In highly variable environment 
mixed pixels, which represent a weighted average of spectral reflectance signals of the different land 

cover types within a pixel may occur (Foody, 2000). 

Approaches such as the sub-pixel mapping can minimize the mixed pixel problem (Roberts et al., 1993).  
Sub pixel mapping methods may be performed through methods such as the regression tree, spectral 

mixture analysis, or a combination of both. Regression tree concept was earlier introduced in this article, 

under the subsection dealing with non-parametric classification. 

Spectral Mixture Analysis (SMA) technique uses information from all the spectral reflectance bands, to 
divide each ground resolution element into its constituent materials through decomposing the DN, or 

reflectance values into fraction images or components using end members (Garcia-Haro et al., 1999). 

End members are spectral reflectance generated from pure target surface classes.The SMA technique has 
been used to characterize the spatial distribution of surface crop residue cover which is a major source of 

SOM (Obade et al., 2011).Mismatches between spatial, spectral and temporal resolution of remotely 

sensed data also create difficulty in the remote sensing based assessment of SOC changes (Lobell, 2010).  
To minimize errors attributed to differing spatial resolution between sensors, an approach that is 

resolution independent should be used in map comparisons. Methods such as Map curves can be useful 

for comparing maps having different spatial resolutions without necessarily conducting rigorous geo-

referencing.  
The spectral reflectance of soil varies depending on the chemical or physical factors, such as soil 

mineralogy, soil moisture, SOM content, soil texture, and particle size (Croft et al., 2012; Wielopolski et 

al., 2011), which makes it difficult to acquire the pure spectral reflectance signals of SOC. The drawback 
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of generic models such as CENTURY, GEMS is that they operate effectively for only soil systems on 

which they were created, and require historic datasets which are rare as part of the inputs (Dieye et al., 

2012; Liu et al., 2011). The knowledge on variation of SOC with depth is also limited, because most SOC 
inventories focus on the first 1 m below the soil surface, although a substantial amount of C can occur at 

greater depths (Batjes, 2008). 

 

DISCUSSION 

Remote sensing data has a high spatial and temporal resolution and can be used for estimating ecosystem 

carbon sequestration. There are two commonly used methods (i.e. Ex situ methods and In situ methods) 

for estimating the spatial pattern of SOC. 
Determination of SOC using laboratory or field based methods may be expensive and time consuming 

especially for C inventory over large spatial extents. The Walkley– Black procedure is simple, rapid with 

minimal equipment needs, the results may vary depending on the land uses, soil depth, and soil texture. 
DC method provides less uncertainty in SOC estimates for different land uses and depth compared with 

Walkley–Black, and proposed conversion equations from Walkley–Black to DC. Although satellite 

derived reflectance data may provide spatially continuous SOC maps at high temporal resolutions, issues 
such as data acquisition costs, preprocessing requirements, and technical complexity have hampered their 

development. 

Although there is a strong relationship between remotely sensed spectral data and SOC content, 

prediction at different spatial scales has not been achieved. Moreover, to draw inferences of SOC content 
from satellite imagery on a large scale necessitates having surrogate indices such as vegetation type and 

species or soil moisture. Beside these shortcomings, remote sensing with its high resolution monitoring 

abilities is applicable for predicting SOC distribution, which is not feasible by any other means. 
All methods have pros and cons and they should be matched to specific measurement needs and 

applications before they are selected or rejected. The choice of an instrument or measurement techniques 

will depend upon the researchers’ need and resources, such as the project objective and funding allotted 

for the project. 
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