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ABSTRACT 
The raphe nucleus in the brain i.e dorsal and median raphe nucleus is the main source of serotonin (5-

HT), an important brain chemical in regulating cognition and behavior. The raphe nucleus is well 

connected neuronally to medial prefrontal cortex, limbic system and also hippocampus. Signal integration 

in pyramidal neurons is exerted at various cellular levels, with a key role played by the large apical 
dendrites. These are highly enriched in serotonergic receptors. There is now evidence showing a direct 

pathway from the retina to the raphe nucleus suggesting that optic stimulation may directly influence 

dorsal raphe nucleus neurons (DRN). 5-HT receptors located on optic afferent terminals can exert pre-
synaptic inhibition of retinocollicular input and direct electrical stimulation of raphe nucleus. Serotonin in 

the DRN exhibits a diurnal rhythm that is influenced by sleep waking cycle and light dark cycle. On the 

other hand, Dendritic cells (DC) are capable of activating T cells. DCs take up and sequester 5-HT in 
lysosomal vesicles for subsequent release. Because DCs are specialized to stimulate naive T cells and 5-

HT is postulated to be taken up by T cells, 5-HT released from DCs may modulate T-cell function. It 

appears that sequestration of 5-HT from neurons to DC and T cells and vice versa following optical 

stimulation of raphe nucleus leads to a regulatory effect on cognition and behaviour. 
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INTRODUCTION 

The raphe nuclei have a vast impact upon the central nervous system (Adell et al., 2002). Many of the 

neurons in the nuclei are serotonergic; i.e., contain 5-HT, a type of monoamine neurotransmitter. The 

raphe nuclei are distributed near the midline of the brainstem along its entire rostro-caudal extension. The 
serotonergic neurons are their main neuronal components, although a proportion of them lie in 

subdivisions of the lateral reticular formation. They develop from mesopontine and medullary primordia, 

and the resulting grouping into rostral and caudal clusters is maintained into adulthood, and is reflected in 
the connectivity.  The dorsal raphe nucleus (DRN) of the mesencephalon is a complex multi-functional 

and multi-transmitter nucleus involved in a wide range of behavioral and physiological processes. 

Numerous studies demonstrate that the DRN receives a wide range of inputs including afferents from the 
locus coeruleus, the lateral habenula, several midbrain areas including the substantia nigra, and the peri-

aqueductal gray, as well as fibers from the hypothalamus and the medial prefrontal cortex. The retina 

sends axons to the DRN which is a retino-raphe projection. Previous studies showed that the DRN 

received a direct retinal input, which consisted of a small number of retinal ganglion cells (RGCs), some 
of which exhibited alpha-like morphology (Foote et al., 1978 and Shen and Samba, 1994). Fite and 

colleagues continued this line of work and reported a substantial number of DRN-projecting RGCs, with 

both small and large soma sizes (Fite et al., 1999) and suggested that these cells arose from the non-image 
forming component of the retina (Fite et al., 2003). Intrinsically photosensitive retinal ganglion cells 

(ipRGCs) are considered the primary retinal component mediating non-image forming functions and these 

cells project to various visual and non-visual nuclei including lateral geniculate nucleus (LGN) 
(Provencio et al., 2002 and Hattar et al., 2002) suprachiasmatic nucleus (SCN), intergeniculate leaflet 

http://en.wikipedia.org/wiki/Serotonin
http://en.wikipedia.org/wiki/Monoamine
http://ukpmc.ac.uk/abstract/MED/81093
http://ukpmc.ac.uk/abstract/MED/10531540
http://ukpmc.ac.uk/abstract/MED/12729964
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(IGL) of the LGN complex, and olivary pretectal nucleus (Morin et al., 2003; Sollars et al., 2003; Dacey 

et al., 2005 and Baver et al., 2008). In this review we evaluate the influence of retina on raphe nuclear 

levels of 5-HT and its sequestration into DC and T cells. 

General Anatomical and Functional Characteristics of 5ht System 

The 5-HT-producing neurons are mainly located in the brainstem raphe nuclei that have been shown to 

give rise to two major groups of neurons: (1) the superior group at the interface between the midbrain and 
the pons; and (2) the inferior group located more caudally in the pons (Azmitia et al., 1995). They form 

the largest and complex neuro-chemical efferent system in the brain. The superior group of 5-HT neurons 

comprising the dorsal and median raphe nuclei is the source of projections to various sites in the forebrain 

as shown in Figure1.  
 

 
Figure 1: Neuronal pathways of raphe nucleus in the brain 

Rich 5-HT innervations of telencephalic limbic regions such as the prefrontal and cingulate cortices, the 

amygdala, hippocampus, and ventral striatum, and diencephalic structures, especially the hypothalamus 
and thalamus, are found (Azmitia et al., 1995 and Bentivoglio et al., 1993). The dorsal and median raphe 

nuclei differentially innervate the forebrain regions. For instance, the dorsal raphe nucleus provides 

projections primarily to the amygdala and ventral striatum, whereas the median raphe nucleus 
preferentially innervates the prefrontal and cingulate cortices and the hippocampus. The least levels of 5-

HT fibers are seen in the motor regions of the frontal lobe (Murphy et al., 1998). The inferior group of 

5HT-containing neurons sends abundant descending spinal projections.Therefore, determining the 
morphological and physiological properties of DRN-projecting RGCs will provide much needed 

information about the type of retinal information processing performed by the DRN. The prefrontal cortex 

is involved in an array of higher brain functions that are altered in psychiatric disorders. Serotonergic 

neurons of the midbrain raphe nuclei innervate the prefrontal cortex and are the cellular target for drugs 
used to treat mood disorders such as the selective serotonin (5-HT) reuptake inhibitors (Abi-Saab et al., 

1999). Anatomical evidence supports the existence of projections from the medial prefrontal cortex 

(mPFC) to the dorsal raphe nucleus (DR). Pyramidal neurons of the mPFC co-express postsynaptic 5-HT 
(1A) (inhibitory) and 5-HT (2A) (excitatory) receptors. Consistent with the above observations, the 

selective activation of both receptors in mPFC reduced and increased, respectively, the firing activity of 

DR 5-HT neurons and the 5-HT release in mPFC. Overall, these data indicate that the activity of the 5-HT 
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system is strongly controlled by the mPFC. Moreover, the activation of postsynaptic 5-HT1A receptors in 

the mPFC reduced the local release of 5-HT (Casanovas et al., 1999) and the firing rate 

of dorsal raphe 5-HT neurons (Birkett and Fite, 2005). These data suggest that  
pyramidal neurons containing 5-HT 1A receptors may play a role in the distal control of 

serotonergic activity.The 5-HT system has been widely demonstrated to be involved in the 

pathogenesis of diverse mental illnesses such as obsessive compulsive disorder (OCD). Several lines of 
evidence suggest that the dysfunction of 5-HT neurotransmission, and especially an altered sensitivity of 

the 5-HT receptor subtype, may constitute a crucial factor in the patho-physiology of OCD. 

Immune System and Central Nervous System 

Immune cell function in the CNS has now been shown to extend beyond pathological conditions. Indeed, 
recent data have suggested key roles for immune cells in healthy brain functions, including psychological 

stress responses, spatial learning and memory, and adult neurogenesis (Kipnis et al., 2004; Brynskikh et 

al., 2008; Ziv et al., 2006 and Goehler et al., 1999). In reality there is abundant communication between 
the immune system and the CNS. For example, intraperitoneal injection of pro-inflammatory cytokines 

was shown to generate CNS-mediated sickness behaviour, which could be blocked by vagus nerve 

transaction (Akwa et al., 1998). The beneficial effect of T cells specific for CNS-restricted self antigens 
has been observed in models of optic nerve injury, spinal cord contusion and stroke, as well as in other 

models of acute and chronic neurodegenerative conditions. T cells have been proposed to mediate their 

neuroprotective effect via the production of neurotrophins, the modulation of glutamate release by 

astrocytes and microglia, the regulation of innate immunity at the site of injury and other, as yet unex-
plored, mechanisms. These data suggest that there is a link between the neuroprotective function of T 

cells and their recognition of self antigens. The possible contribution of astrocytes to immune responses 

within the brain has been described in several settings, including those involving the targeted 
overexpression of cytokines such as TNF, IFN-α, TGF-β, IL-6, and IL-12 by astrocytes, which leads to 

chronic inflammation and progressive neurodegeneration (Pagenstecher et al 2000, Wyss-Coray et al 

1997, Krishnamoorthy et al., 2007). More recent studies analyzing mice in which the ability of astrocytes 

to participate in immune function is compromised through the specific loss of a cytokine receptor such as 
gp130 or reduced NF-κB signaling, have shown that this alters the course of immune responses in the 

CNS (Drogemuller et al., 2008). Thus, in a mouse model of spinal cord injury, astrocyte-specific 

inhibition of NF-κB (which is necessary for the activation of many cytokine genes) resulted in a reduction 
in the number of reactive astrocytes in the CNS, in lower levels of chemokines, and in reduced infiltration 

of T cells and macrophages (Sofroniew, 2005). Consequently, this led to improved spinal cord healing. 

Future challenges include determining how individual cytokines, adhesion molecules, and chemokines 
produced by astrocytes influence the development of inflammation and the behavior of infiltrating 

immune cell populations. 

Sequestration of 5-Ht from the Raphe Nucleus into Immune Cells and Vice Versa and Distribution 

into Discrete Brain Sites: A Novel Hypothesis 
Several types of immune cells including B and T cells, granulocytes, macrophages, mast cells and 

dendritic cells are located within the meningeal structures of the brain. Although functional roles of these 

DRN-projecting ganglion cells remains unclear, there is evidence that DRN neurons respond to changes 
in the light and dark cycle (Nautiyal et al., 2011 and Wolf et al., 2009) and they are sensitive to phasic 

flashing light stimulation. There is a direct anatomical connection between the DRN and SCN (Filippova 

et al., 2004 and Heym et al., 1982). Furthermore, in addition to the conventional retino-hypothalamic 
tract (RHT) that provides luminance information necessary for entrainment, brief millisecond photo 

stimulation has been shown to be capable of inducing circadian phase shifts (Van Den Pol et al., 1998 and 

Morin, 1999). All the members of the 5HT1 receptor subtype belong to the family of G protein-coupled 

receptors. They generally reduce adenylate cyclase activity, leading to decreased cyclic adenosine 
monophosphate (cAMP) production. The 5TH1A receptor represents a somato-dendritic autoreceptor on 
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the cell body of 5HT neurons in the brainstem raphe nuclei. Another subtype, the 5HT1B receptor and its 

human homolog, 5HT1D has been found to function as an autoreceptor on axon terminals 

(Arvanitogiannis and Amir, 1999). When activated, these two receptors attenuate the intrinsic firing of the 
raphe cells, thereby inhibiting 5HT release. The 5HT1A receptors have also been characterized at 

postsynaptic sites (Backstrom et al., 1995 and Marek and Aghajanian, 1999). A significant amount of 

5HT1B receptors are present on postsynaptic structures, although their function is still unknown (Sander-
Bush and Mayer, 2001). Therefore, there could be a second pathway that conveys fast luminance 

changing signals to SCN. Dendritic cells (DC) are capable of activating T cells. DCs take up and can 

sequester 5-HT in lysosomal vesicles for subsequent release. Because DCs are specialized to stimulate 

naive T cells and 5-HT is postulated to be taken up by T cells, 5-HT released from DCs may modulate T-
cell function (Eberl et al., 2004). It appears that sequestration of 5-HT from neurons to DC and T cells 

following optical stimulation of raphe nucleus leads to a regulatory effect on memory and learning 

(Hornung, 2003 and Tyagi, 2012). The effect of T cells on the CNS might also be mediated via soluble 
cytokines that are released into the circulation. This raises the issue of the variability of blood–brain 

barrier permeability and how this influences the possibility of a peripheral T cell effect (Bird, 2005). 

 

CONCLUSION 

This study clearly suggests a novel mechanism for 5-HT sequestration and distribution in the brain after 

photo-stimulation. There is enough evidence showing a direct pathway from the retina to the raphe 

nucleus suggesting that optical stimulation may directly influence dorsal raphe nucleus neurons (DRN). 5-
HT receptors located on optic afferent terminals can exert pre-synaptic inhibition of retinocollicular input 

and direct electrical stimulation of raphe nucleus. It is suggested that DCs take up and sequester 5-HT in 

lysosomal vesicles for subsequent release. Because DCs are specialized to stimulate naive T cells and
 
5-

HT is postulated to be taken up by T cells, 5-HT released from DCs may modulate T-cell function. It 

appears that sequestration of 5-HT from neurons to DC and T cells and vice versa following optical 

stimulation of  raphe nucleus leads to a regulatory effect on cognition and behavior. 
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