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ABSTRACT 
A situation of laminar mixed convection flow of a visco elastic fluid of second grade through a porous 
medium in an inclined permeable channel has been examined in this paper. It is observed that as the 
Prandtl number increases, the velocity is found to be inversely proportional   and also at times back flow 
is noticed.  When the channel is held horizontal, the velocity profiles are parabolic.  As the wall 
temperature increases, the velocity appears to be decreasing.  Increase in the angle of inclination 
contributes to increase in velocity. However, nearly after 50% of the channel width, a reverse trend is 
observed. Such a pattern is found to be absent when the visco elasticity of the fluid is comparatively high.   
As the Darcy’s parameter increases, more of back flow is noticed.  In general, the velocity profiles are 
found to be parabolic in nature and the velocity is more when the channel is vertical.  Further, the cross 
flow Reynold’s number contributes to the velocity field significantly. It is seen that increase in cross flow 
Reynold’s number causes the velocity field to decrease. The increase in visco elasticity for similar values 
of the Reynold’s number contributes to more of a backward flow.  
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INTRODUCTION 
There is a fast growing belief that the many provocative experimental phenomena and dilemmas now 
have become a realistic possibility of being explained theoretically by Non-Newtonian Fluid Mechanics. 
An attempt is made in this paper to illustrate such an optimistic thought in advocating visco elastic effect 
that occurs in several industrial and biological applications. In recent years, considerable attention has 
been devoted to the study of boundary layer flow behaviour and heat transfer characteristics of a 
Newtonian fluid past a vertical plate embedded in a fluid saturated porous medium because of its 
extensive applications in engineering processes, especially in the enhanced recovery of petroleum 
resources and packed bed reactors. Considerable amount of interest had also been devoted to the study of 
transport properties in porous media subject to heat transfer which are subsequently characterized by 
highly non - linear coupled partial differential equations.  In view of diversified applications in the fields 
of Physics, Chemistry and Chemical Technology and in situations demanding efficient transfer of mass 
over inclined beds, the viscous drainage in a channel of course horizontal/ vertical has been the subject of 
considerable interest to both theoretical and experimental investigators during the last several years.  
In many chemical processing industries generally slurry adheres to the reactor vessels and gets 
consolidated. As a result of this, the chemical compounds within the reactor vessel percolates through the 
boundaries causing loss of production and then consuming more reaction time. The slurry thus formed 
inside the reactor vessel often acts as a porous boundary for the next cycle of chemical processing.  Heat 
transfer in porous medium has several applications in the situations viz: nuclear waste disposal, 
geothermal energy extraction, fossil fuels detection, regenerator bed etc. Understanding the development 
of hydrodynamic and thermal boundary layer along with the heat transfer characteristics is the basic 
requirement to further investigate the problem extensively and more exhaustively.  
It is known that liquids respond like elastic solids to impulses, which are very rapid compared to the time 
it takes for the molecular order associated with short range of intra molecular forces in the liquid enabling 
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them to relax. After this, all liquids behave like viscous fluids with signals propagating by diffusion rather 
than by waves. For liquids with small molecules this time of relaxation is estimated around 10−13 or 10−10 

seconds depending on the fluids. However, there exist few liquids which are known to have much longer 
times of relaxation. Polymers mixed in Newtonian solvents and in some cases polymers melted like 
molten plastics possessing high viscosity silicone oils are few such examples. These fluids are known as 
visco elastic fluids. The longest times of relaxation for these fluids are more of practical interest.   
Such fluids have become important industrially. Specifically, in polymer processing applications as well 
as in chemical industry, one deals with flow of visco elastic fluids. A classical example of such a liquid is 
poly iso - butylene. With the development of general constitutive equations for visco elastic fluids, it has 
been a point of great concern for Non-Newtonian fluids. All such proposed constitutive equations should 
in principle lead to the definition of flow properties that need to be measured to define the rheology and 
also to the development of the equivalent Navier Stokes equations for the solution of all possible 
boundary value along with initial value problems that arises in several situations. The process is 
completed by solution of the appropriate equations, where the methods of computational fluid mechanics 
are required as a last resort.  However, some of the analytical methods for complex flows of visco elastic 
fluids generally predict the nature of flow field and gives rise to more or less accurate solution though not 
a  perfect solution. In all such situations, the methodology that is applied must be evolved and considered 
appropriately. It is pertinent to be quite specific about the experimental conditions applicable to the 
relevant phenomena. Generally, the flows are invariably complex and the experimental dilemmas clearly 
refer to complex flows, where the flow domain  sometimes often involves abrupt changes in geometry, 
and where the flow strength is high enough to permit a terminology which majors on  high Weissenburg 
and Deborah numbers. This is of course reasonable and but definitely not unrealistic, and it nevertheless 
need to be stated. 
Therefore, now the question that often arises is to address the situation to know how elastic liquids behave 
in complex flows.  It is immediately apparent that the answer must involve a consideration of how the 
same liquids behave in simple flows, so that obtaining rheometrical data on the test liquids is an essential 
part of the exercise.  Such data, when available, serve more than one useful purpose. They certainly 
provide a foundation set of data, which must be accommodated in the associated mathematical model for 
the test liquids. That is to define a perfect constitutive equation, which is an essential ingredient in any 
theoretical resolution of the experimental dilemmas, and has to be consistent with the physical situation. 
Indeed, if the model cannot simulate behavior in simple flows, the chances of exploring new dimensions 
will be an all time open problem for analysis.  
The model that has been considered here in this paper is of Second order fluid whose constitutive relation 
has been proposed by Noll. The relation involves visco elasticity and also covers the concept of cross 
viscosity.  Flow through porous media has been the subject of considerable research activity in recent 
years because of its diversified applications notably in the flow of oil through porous rock, the extraction 
of geothermal energy from the deep interior of the earth to the shallow layers, the evaluation of the 
capability of heat removal from particulate nuclear fuel debris that may result from a hypothetical 
accident in a nuclear reactor, the filtration of solids from liquids, flow of liquids through ion-exchange 
beds, drug permeation through human skin, chemical reactor for economical separation or purification of 
mixtures and so on. 
Flow in a porous medium can be considered as an ordered flow in a disordered geometry. The transport 
process of fluid through a porous medium involves two substances, the fluid and the porous matrix, and 
therefore it will be characterized by specific properties of these two substances. A porous medium usually 
consists of a large number of interconnected pores each of which is saturated with the fluid. The exact 
form of the structure however, is highly complicated and differs from one medium to other medium. A 
porous medium may be either an aggregate of a large number of particles such as sand or gravel or solid 
containing many capillaries as seen in a porous rock (laterite stone). When the fluid percolates through a 
porous material, because of the complexity of microscopic flow in the pores, the actual path of an 
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individual fluid particle cannot be followed analytically. In all such cases, one has to consider the gross 
effect of the phenomena represented by a macroscopic view applied to the masses of fluid, large 
compared to the dimensions of the pore structure of the medium. The process can be described in terms of 
equilibrium of forces.  The driving force necessary to move a specific volume of fluid at a certain speed 
through a porous medium is in equilibrium with the resistive force generated by internal friction between 
the fluid and the pore structure. Such a resistive force is characterized by Darcy’s (1856) semi - empirical 
law. The simplest model for flow through a porous medium is the one dimensional model derived by 
Darcy.  From such empirical evidence, Darcy’s law indicates that, for an incompressible fluid flowing 
through a channel filled with a fixed uniform and isotropic porous matrix, the flow speed varies linearly 
with longitudinal pressure variation.  Several investigators have considered the non-Darcian model in the 
recent past to study the convection and heat transfer rates on bodies embedded in a porous medium for 
Newtonian fluids. 
Although this problem is important in polymer processing applications. Benenati and Brosilow (1962) 
have shown that the permeability of a porous medium varies due to the variation of porosity from the wall 
to the interior of the porous medium. The problem of the exact solutions of two dimensional flows of a 
second order incompressible fluid has been examined by Pattabhi Ramacharyulu (1964) by considering 
rigid boundaries while Kaloni (1966) examined the fluctuating flow of a visco elastic fluid past an infinite 
porous plate subject to uniform suction.   Thereafter, Merkin (1969) investigated the mixed convection 
boundary layer flow on a semi-infinite vertical flat plate when the buoyancy forces aid and oppose the 
development of the boundary layer. In this study two series solutions were obtained, one of which is valid 
near the leading edge and the other is valid asymptotically. In the regions where the series solutions are 
not valid, numerical solutions were obtained. Lloyd and Sparrow (1970), Oosthuizen and Hart (1973) and 
Wilks (1973) have carried out a numerical study of the combined forced and free convection flow over a 
vertical plate.  Later, a linear analysis of the compressible boundary layer flow over a wall was presented 
by Lekoudis et al., (1976) while, Shankar and Sinha (1976) studied the problem of Rayleigh for a wavy 
wall.  Subsequently, Lessen and Gangwani (1976) examined the effect of small amplitude wall waviness 
on the stability of the laminar boundary layer.  The problem of free convection heat transfer from a 
vertical plate embedded in a fluid saturated porous medium is studied by Cheng and Minkowycz (1977), 
who have obtained the similarity solutions for the problem considered.   
Cheng (1978) has provided an extensive review of early works on free convection in porous media while, 
Mucoglu and Chen (1979) had examined the mixed convection flow over an inclined surface for both the 
assisting and the opposing buoyancy forces.  The linearity between speed and pressure variation breaks 
down for large enough flow speed (a compilation of several experimental results) was presented by Mac 
Donald et al., (1979). This was emphasized later by Joseph et al (1982) who stressed force modeled by 
the Frochheimer acts in a direction opposite to the velocity vector.  Ramachandran et al (1987) have 
studied the mixed convection flow over vertical and inclined surfaces, theoretically as well as 
experimentally.  Later, Knupp and Lage (1995) analyzed the theoretical generalization to the tensor 
permeability case (anisotropic medium) of the empirically obtained Frochheimer extended Darcy 
unidirectional flow model.  
 A numerical and experimental investigation of the effects of the presence of a solid boundary and initial 
forces on mass transfer in porous media was presented by Vafai and Tien (1982).  Murthy et al (1977) 
had examined the dispersion effects due to a heated vertical flat plate.  Subsequently, the problem of free 
convective heat transfer in a viscous incompressible fluid confined between vertical wavy wall and a flat 
wall was examined by Vajravelu and Shastri (1978).  Merkin (1969) have obtained the similarity solution 
of the mixed convection flow over a vertical plate for the constant heat flux case. Tsuruno and Iguchi 
(1980) have investigated the effects of the surface mass transfer on the mixed convection flow on a 
permeable vertical surface. Plumb and Huenefeld (1981) have investigated non-Darcy natural convection 
from vertical isothermal surfaces in saturated porous media.  Recently, Bejan and Poulikakos (1984) have 
used the model suggested by Forchheimer study vertical boundary layer natural convection in a porous 
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medium. The steady flow of an incompressible second grade fluid past an infinite porous plate subject to 
suction or blowing was investigated by Rajagopal and Gupta (1984).  
Chandrasekhar and Namboodiri (1985) have shown the effectiveness of variable permeability of the 
porous medium on velocity distribution and heat transfer.  Hong et al (1987) have studied analytically the 
non-Darcian effects on a vertical plate natural convection in porous media. They used a combination of 
Rayleigh and Darcy numbers to describe the inertia and boundary terms and obtained similar solutions. 
They found that these effects decrease the velocity and reduce the heat transfer rate.  Lai and Kulacki 
(1987) have used both Darcy and non- Darcy models (inertia effect only) to study mixed convection from 
horizontal and vertical surfaces embedded in saturated porous media.  Nakayama and Koyama (1987) 
have obtained the similarity solution for the problem of free convection in the boundary layer adjacent to 
a vertical plate immersed in a thermally stratified porous medium. Kumari et al. (1990) have investigated 
the non-Darcian effects on forced convection heat transfer over a flat plate in a highly porous medium. 
Wickern (1991) has examined the influence of the inclination angle of the plate and the Prandtl number 
on the mixed convection flow over an inclined plate.  Thereafter, Das and Ahmed (1992) had studied the 
effects of thermal dispersion and dissipation effects on non – Darcy mixed convection problems and 
established the trend of heat transfer rate convection from a vertical plate in porous medium and 
investigated the flow and temperature fields.   
Hsieh et al., (1993) have obtained a non-similar solution for combined convection from vertical plates in 
porous media with variable surface temperatures or heat flux.  Hung and Chen (1997) have studied non-
Darcy free convection in a thermally stratified fluid saturated porous medium along a vertical plate with 
variable heat flux.  It follows that, in multidimensional flow, the momentum equations for each velocity 
component derived by using the Frochheimer extended Darcy equation is at least speculative while 
Patidar and Purohit (1998) studied the free convective flow of a viscous incompressible fluid in porous 
medium between two long vertical wavy walls. Later, Kuznetsov (2000) investigated the effect of 
transverse thermal dispersion on forced convection in porous media and identified the situations favorable 
to heat transfer under dispersion effects. Thereafter, Mohammadien and El-Amin (2000) studied the 
dispersion and radiation effects in fluid saturated porous medium on heat transfer rate for both Darcy and 
non-Darcy medium.  An explicit analytical technique namely homotopy analysis to solve the non - Darcy 
natural convection over a horizontal plate with surface mass flux and thermal dispersion was studied by 
Wang et al (2003).  Subsequently, Taneja and Jain (2004) had examined the problem of MHD flow with 
slip effects and temperature dependent heat source in a viscous incompressible fluid confined between a 
long vertical wall and a parallel flat plate. Recently, Ramana Murthy and Kulkarni (2005) examined the 
problem of elastic - viscous fluid of second order type by causing disturbances in the liquid which was 
initially at rest and the bounding surface was subjected to sinusoidal oscillations. 
In this paper an attempt has been made to examine the momentum and heat transfer in the steady flow of 
a visco elastic fluid in a channel which is being either held horizontally or vertically. Flow of visco elastic 
fluid over vertical surfaces occurs in many industrial and technical applications which include nuclear 
reactors cooled during emergency shutdown, electronic devices cooled by fans, solar central receivers 
exposed to wind currents, and heat exchangers placed in a low velocity environment. In the study of fluid 
flow over heated surfaces, the buoyancy forces are generally neglected when the flow is horizontal. 
However, for vertical or inclined surfaces, the buoyancy forces exert strong influence on the flow field. 
Hence, it is not possible to neglect the effect of buoyancy forces for vertical or inclined surfaces. Also, 
these equations were solved by employing the local similarity and local non similarity methods.  The aim 
of this investigation is to consider the effects of heating or cooling of certain portions of the surface on the 
steady laminar mixed convection flow over a permeable vertical plate. The magnetic field is applied 
normal to the surface.  
Nonetheless, the inertia effects become all the more so important that in a sparsely packed porous 
medium and hence their effect on free convection problems needs to be investigated. The aim of the 
present investigation is, therefore, to study systematically the effect of inertial terms on combined free 
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and forced convective heat transfer past a semi-infinite vertical plate embedded in a saturated porous 
medium with variable permeability, porosity and thermal conductivity. The results obtained under 
limiting conditions agree well with the existing ones and thus verify the accuracy of the method used. 
In all the above investigations, the fluid under consideration was viscous incompressible fluid and one of 
the bounding surfaces had a wavy character.  The local volume averaging technique has been used to 
establish the governing equations. The numerical solution of the governing equations is used to 
investigate the mass concentration field inside a porous media close to an impermeable boundary. In 
conjunction with the numerical solution, a transient mass transfer experiment has been conducted to 
demonstrate the boundary and inertia effects on mass transfer. In all above analysis, such a concept was 
accomplished by measuring the time and space averaged mass flux through a porous medium. The results 
clearly indicate the presence of these effects on mass transfer through porous media. 
We consider the laminar mixed convection flow of a visco elastic fluid through a porous medium in an 
inclined permeable channel.  The plates are separated by a width h , as shown below.  

 
Geometry of the flow field 

 
It is assumed that the rate of injection at one wall is equal to the rate of suction at the other wall.  A 
rectangular coordinate system  yx,   is chosen such that the x - axis is parallel to the gravitational 
acceleration vector g , but with opposite direction and the y - axis is transverse to the channel walls.  The 
left wall (i.e. at 0y ) is maintained at constant temperature 1T  and the right wall (i.e. at hy  ) is 
maintained at constant temperature 2T  , where 21 TT   .The flow is assumed to be laminar, steady and is 

fully developed, i.e. the transverse velocity is zero.  Then, the continuity equation drops to 0



x
u

. 

The fluid under consideration is assumed to be of Rivlin - Ericksen type whose constitutive equation is 
proposed as 

                                                   
2(1) (2) (1)

1 2 3ij ij ij ij ijS P E E E                                                    (1) 

where                                                  (1)
, ,ij i j j iE U U                                                                   (2) 

 and                                             (2)
, , , ,2ij i j j i m i m jE A A U U                                                         (3) 
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In the above equations, ijS  is the stress-tensor, ,i iU A  are the components of velocity and acceleration in 

the direction of the i th co-ordinate iX  ,  P  is indeterminate hydrostatic pressure and the coefficients 

1 2,  and 3 are material constants. 
The constitutive relation for general Rivlin-Ericksen fluids also reduces to equation (1) when the squares 
and higher orders of  2E are neglected, the coefficients being constants. Also the non-Newtonian models 
considered by Reiner could be obtained from equation (1) when 2 0  , naming 3  as the coefficient of 
cross viscosity. With reference to the Rivlin – Ericksen fluids 2  may be called as the coefficient of 
viscosity. It has been reported that a solution of poly-iso-butylene in 4% of cetane behaves as a second 
order fluid and Markovitz determined the constants 1 2,  and 3 . 
The visco elastic fluids when modeled by Rivlin - Ericksen constitutive equation are termed as second 
grade fluids.  It is assumed that:               

                                           01   , 02   and 032                                                               (4) 
 
The basic equations of momentum and energy governing such a flow, subject to the Boussinesq 
approximation, are  

                    
2 3

1
0 1 2 0 02 3 ( ) sindu dp d u d u u g T T g

dy dx dy dy k
                                          (5) 

                               
2

0 2

dT d T
dy dy

                                                                          (6) 

where p is the pressure,  is the  density, 1  is the dynamic viscosity of the fluid, g  is acceleration due 
to gravity,   coefficient of thermal expansion, 2  is the visco elastic parameter, k  is the permeability of 
the porous  medium and 0  is the transpiration  cross flow velocity,   is the thermal conductivity of the 

fluid medium. Further, here 
dx
dp

 is a constant. 

  The boundary conditions are given by 0)()0(  huu , 1)0( TT  and 2)( ThT               (7) 
 
The constitutive relation that has been proposed for the fluid under consideration needs to be solved in 
conjunction with the stress equations of motion and the equation of continuity and then to predict and 
explain the experimental phenomena and dilemmas. Analytic solutions are out of the question so far as 
complex flows are concerned and computational Rheology is now established, if fairly recent science is 
made more analytical which seeks theoretical answers to provocative experiments and phenomena. 
Clearly, the choice of constitutive equation is central to the whole operation and this choice is far from 
trivial or obvious. Indeed, a constitutive model which satisfies the dual constraints of tractability and 
quantitative (or even semi quantitative) prediction may not exist. However, it should not and does not 
prevent a search for such a missing link. But it is wise to be aware of the possibility of disappointment. 

Introducing the following non -dimensional variables 
_

y =
h
y

, 
_

u = 2h
u

 and  = 1 0

2 0

T T
T T



into the equations 

(5) and (6), the governing equations for momentum and energy are transformed into: 
 

                             

3 2

3 2

1 0
Re

d u d u du GrR R u A GSin
dy dy dy Da

                                                         (8) 
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0Pr2

2


dy
dR

dy
d 

                                                                  (9) 

where 2
2h




 is the visco elastic parameter, 0

1

hR 



 

is the cross flow Reynolds number, 

3
2 1

2

( )g T T hGr 



  is the Grashoff number, 


 hu0Re 
 
is the Reynolds number, Pr 




 
is the 

Prandtl number, 
02

01

TT
TTrT 


   is the wall temperature parameter and   2

0)(
h
u

dx
dpA   is the constant 

pressure gradient,  1v 


  is the momentum diffusivity. 

The corresponding dimensionless boundary conditions are given by  
     0)1()0(  uu , Tr)0( and 1)1(                                             (10)         
 
SOLUTION 
The first – order perturbation solution of the BVP (4) – (6) for small values of   are consider due to the 
reason that, the constitute equation (1) has been derived up to only the first – order of smallness of  , 
therefore, the perturbation solution obtained by retaining the terms up to the same order of smallness of β 
must be quite logical and reasonable.  Therefore, it is reasonable to assume that:    
                                           0 1u u u                                                              (11) 
and                                          0 1                                                                (12) 
 
Substituting equations (11) and (12) into equations (8) and (9) and boundary conditions (10) and then 
equating the like powers of  , the following set of equations are obtained: 
 
Zeroth-order system 0( )         

                                           
2

0 0
0 02

1 sin
Re

d u du GrR u A G
dy dy Da

                                              (13)  

0Pr 0
2
0

2


dy

dR
dy
d 

                                              (14) 

together with boundary conditions  0)1()0( 00  uu  , Tr)0(0 and  1)1(0                              (15)  
 
First-order system 1( )  

                                               
13

0
3

1
1

2
1

2

Re
1


Gr

dy
udRu

Dady
duR

dy
ud


                                      

(16)               
 

                                                              
0Pr 1

2
1

2


dy
dR

dy
d 

                                                      (17) 

together with boundary conditions  0)1()0( 11  uu  and 0)1()0( 11                                   (18) 
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Zeroth-order solution (or Solution for a Newtonian fluid) 
 
Solving equations (13) and (14) using the boundary conditions (15), we get 

                                        )1(
)1()1(

Pr

PrPr

0 R

yR
T

R
T

e
erer





                                                                   (19)               

                           
ADaeffGrececu yRbyay  )(

Re
Pr

2110 2 Da GSin                      (20) 

where 

2
/42 DaRRa 

 ,
2 4 / ,
2

R R Dab  
 ,

)1(
)1(

Pr

Pr

1 R

R
T

e
Daerf






,
)/1PrPr)(1(

)1(
222Pr2 DaRRe

rf R
T





 

3 1 2( ) sin ,
Re
Grf f f ADa DaG      

                
Pr

4 1 2( ) sin
Re

RGrf f f e ADa DaG     ,  ab

b

ee
effc




 34
1 , ab

a

ee
fefc




 43
2 .                     (21) 

 
First-order solution (or Solution for a second-grade fluid) 
Solving equation (17) with corresponding boundary conditions, we obtain 01                                   (22) 
 
Substituting the equations (20) and (22) into the Eq. (16) and then solving the resulting equation with the 
corresponding conditions, we get  
 

                                           
Pr

1 3 4 6 7 5
ay by ay by R yu c e c e f ye f ye f e                                          (23)  

where                  
)/1PrPr(

Pr
Re 222

34
2

5 DaRR
RfGrf


 ,

Ra
aRcf



2

3
1

6 Rb
bRcf



2

3
2

7 , 

                           ,76
Pr

58
baR efefeff       ,58

3 ab

b

ee
effc




   .85
4 ab

a

ee
fefc





                     

(24) 

 
The complete solution is given by 0 1u u u  and 0 1                                                       (25) 
 
It can be verified that, when 0 , 0R and Da our results reduces to those given by Aung and 
Worku (1986). 
 
RESULTS AND CONCLUSIONS 
1. The influence of Prandtl number (in case of an inclined channel) on the velocity profiles has been 
illustrated in fig. 1, fig. 2, fig. 3 and fig. 4. It is observed that as the Prandtl number increases, the velocity 
decreases and also at times back flow is seen. Increase in the Prandtl number appears to influence the 
intra molecular forces to be more coherent and strong so as to prevent the forward motion. In a situation 
where the visco elasticity of the fluid and all other parameters are similar as the angle of inclination 
increases, the fluid velocity decreases. For relatively smaller values of the visco elasticity completely 
back flow is noticed and as the visco elasticity increases, the motion appears to be in the forward 
direction.  
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Fig. 1: Velocity profiles for different Prandtl no. when β = 0.02 and α = π/6. 

 

 
Fig. 2: Influence of Prandtl no. on velocity profiles when β = 0.1 and α = π/6. 

 

 
Fig. 3: Effect of Prandtl no. on velocity profiles when β = 0.02 and α = π/4. 
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Fig. 4: Characterisation of velocity profiles under the influence of Prandtl no.  

for β = 0.08 and α = π/4. 
 
2. The effect of the Darcy’s number on the velocity field is shown in fig. 5, fig.6 and fig. 7. In each of 
these cases, it is seen that as the Darcy’s parameter (the pore size of the medium) increases, more of 
backward flow is seen. This is in anticipation of the realistic situation that as the pore size increases, the 
fluid almost percolates and the situation is more seen when the channel is inclined.  From fig. 5 and fig. 6, 
it is seen that as the visco elasticity decreases, more of backward flow is noticed.  

 
Fig. 5: Profiles for velocity under the influence of Darcy no. when β = 1 and α = π/6. 

 
Fig. 6: Effect of Darcy no. when β = 0.5 and α = π/6 on velocity profiles.
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Fig. 7: Influence of Darcy no. on velocity profiles when β = 1 and α= π/3. 

3. In a situation of a horizontal flow, the effect of wall temperature on the velocity field has been studied 
in fig. 8, fig. 9, fig. 10 and also when the channel is inclined in fig. 11. In a case where the channel is held 
horizontal, the velocity profiles are found to be parabolic and as the wall temperature increases, the 
velocity decreases. On comparing the fig. 8, fig. 9 and fig. 10 it is noticed, the visco elasticity of the fluid 
contributes significantly to the velocity. Increase in visco elasticity causes the fluid velocity to decrease. 
In a situation where all other parameters are held constant including the visco elasticity of the fluid, as the 
channel is more inclined the fluid velocity is more proportional. 

 
Fig. 8: Characterisation of velocity profiles under the influence of wall temperature when the 

channel is horizontal. 

 
Fig. 9: Effect of wall temperature on velocity profiles when the channel is horizontal 

and visco elasticity is 0.01. 
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Fig. 10: Velocity profiles under the influence of room temperature when β = 0.1 and α= 0. 

 
Fig. 11: Influence of room temperature on velocity profiles when β = 0.01 and α= π/4. 

 
4. The effect of Grashof number on the velocity field has been illustrated in fig. 12, fig. 13, fig. 14 and 
fig. 15. A consolidated review of all such illustrations shows that as the visco elasticity increases, the 
fluid velocity decreases. Further, in each of these cases it is noticed that increase in Grashof number 
contributes to increase in the velocity. 

 
Fig. 12: Profiles for velocity for different Grashof numbers when β = 0.2 and α = 0. 
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Fig. 13: Characterisation of the profiles of velocity under the influence of Grashof number 

with β = 1 and α = 0. 
 

 
Fig. 14: Effect of Grashof number on velocity profiles when the channel is horizontal and β = 0.2. 

 
Fig. 15: Influence of Grashof number with β = 1 and α = 0 on velocity profiles. 

 
5.  Relatively for smaller values of visco elasticity and when the channel is held horizontal, the 
contribution of the Grashof number is shown in fig 16 and fig. 17. In both the illustrations, it is seen that 
as the visco elasticity increases, apart from the forward motion, a backward motion is also noticed. And a 
point of inflection is seen nearly at 70% of the channel width.  
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Fig. 16: Velocity profiles for different Grashof numbers under the influence of visco elasticity. 

 
Fig. 17: Characterisation of the influence of Grashof number and β = 0.03 and α = 0 on velocity 

profiles. 
 
6. The contribution of the inclination of the channel for different visco elastic parameters has been 
illustrated in fig. 18, fig. 19 and fig. 20. A general trend that can be seen from fig. 18, fig. 19 and fig. 20 is 
that the increase in the visco elasticity contributes to the more of the back flow at the other boundary of 
the channel. However, in each of these situations, increase in the angle of inclination contributes to the 
increase in the velocity. However, nearly after the 50% of the channel width, a reverse trend is observed 
which is found to be absent when the visco elasticity of the fluid is comparatively high. 

 
Fig. 18: Effect of angle of inclination on velocity profiles with β = 0.06. 
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Fig. 19: Influence of angle of inclination with β = 0.1 on velocity profiles.   

 
Fig. 20: Velocity profiles for different angles of inclination with the effect of visco elasticity.

 
7. The influence of cross flow Reynold’s number in a situation where the channel is held perfectly vertical 
fig. 21 and horizontal fig. 22 has been depicted.  However might be the situation, in general the velocity 
profiles are found to be parabolic and the velocity is more in a situation when the channel is held vertical. 
In both the cases, increase in the cross flow Reynold’s number contributes to the decrease in the velocity 
field. 

 
Fig. 21: Characterisation of cross flow Reynold’s no. on velocity profiles 

when β = 0.1 and α = π. 
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Fig. 22: Velocity profiles for cross flow Reynold’s no. when the channel is held horizontal 

and β = 0.1. 
 
8. The effect of cross flow Reynold’s number with respect to the angle of inclination has been depicted in 
fig. 23 and fig. 24. In general it is observed that, as the channel is more inclined, the velocity appears to 
be proportional. Further, the influence of the cross flow Reynold’s number does not qualitatively alter the 
characteristic features as was seen above.  

 
Fig. 23: Effect of cross flow Reynold’s no. on velocity profiles when β = 1 and α = 0. 

 
Fig. 24: Influence of cross flow Reynold’s no. on velocity profiles 

when β = 1 and α = π/2. 
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Fig. 25: Characterisation of Reynold’s no. on velocity profiles 

when the channel is held horizontal and β = 0.02. 

 
Fig. 26: Velocity profiles for Reynold’s number when β = 0.06 and α = 0.  

 
Fig. 27: Effect of Reynold’s no. on flow velocity in a horizontal channel with visco elasticity 0.1. 
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Fig. 28: Velocity profiles under the influence of different Reynold’s number, and visco elasticity. 

 
9. From fig. 25, fig. 26, fig. 27 and fig. 28 illustrates the effect of Reynold’s number when the channel is 
held perfectly horizontal. A consolidated review shows that, for relatively smaller values of visco 
elasticity, the velocity profiles are perfectly parabolic in nature while a point of inflection has been 
noticed nearly at 70% of the channel width and a backward flow is observed. The increase in the visco 
elasticity, for similar values of the Reynold’s number contributes to more of a backward flow. 
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