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ABSTRACT 
Similarity solutions are obtained for one-dimensional unsteady adiabatic flow of a dusty gas behind a 

spherical shock wave with time dependent energy-input under the influence of a gravitational field. The 

dusty gas is assumed to be a mixture of small solid particles and a non-ideal gas. It is assumed that the 

viscous stress and heat-conduction of the mixture are negligible. An equation of state of the dusty gas is 

derived. The shock-Mach number is not infinite, but has a finite value. Effects of a change in the value of 

the parameter of non-idealness of the gas in the mixture, the mass concentration of the solid particles in 

the mixture, the ratio of the density of the solid particles to the initial density of the gas and variation of 

parameter of gravitation are obtained. 
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INTRODUCTION 
The study of shock wave in a mixture of a gas and small solid particles is of great importance due to its 

application to nozzle flow, lunar ash flow, coal-mine explosions, bomb blasts and many other engineering 

problems (see Pai et al., 1980; Miura and Glass, 1983). Miura and Glass (1985) obtained an anlytic 

solution for a planer dusty gas flow with constant velocities of the shock and the piston moving behind it. 

As they neglected the volume occupied by the solid particles mixed into the perfect gas, the dust virtually 

has a mass fraction but no volume fraction. Their results reflect the influence of the additional inertia of 

the dust upon the shock propagation. Pai et al., (1980) generalized the well known solution of a strong 

explosion due to an instantaneous release of energy in gas (Sedov, 1959), Korobeinikov (1976)) to the 

case of two phase flow of a mixture of perfect gas and small solid particles, and brought out the essential 

effects due to the presence of dusty particles on such a strong shock wave. As they considered the non-

zero volume fraction of solid particles in the mixture, their results reflects the influence of both the 

decrease of mixture‟s compressibility and the increase of mixture‟s inertia on the shock propagation 

(Steiner and Hirschler, 2002; Vishwakarma and Pandey, 2003; Vishwakarma and Nath, 2006). 

Carrus et al., (1951) have studied the propagation of shock waves in a gas under the gravitational 

attraction of a central body of fixed mass (Roche Model) and obtained similarity solutions by numerical 

methods. Rogers (1957) has discussed a method for obtaining analytical solution of the same problem. 

Ojha et al., (1998) have discussed the dynamical behaviour of an unstable magnetic star by employing the 

concept of the Roche Model in an electrically conducting atmosphere. Singh (1982) has studied the self-

similar flow of a non-conducting perfect gas, moving under the gravitational attraction of a central body 

of fixed mass, behind a spherical shock wave driven out by a propelling contact surface into quite solar 

wind region. Total energy content between the inner expanding surface and the shock front is assumed to 

be increasing with time. 

The assumption that the gas is ideal is no more valid when the flow takes place at extreme conditions. 

Anisimov and Spiner (1972) have taken an equation of state for low density non-ideal gases in a 

simplified form, and investigated the effect of parameter for non-idealness on the problem of a strong 

point explosion. 
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In the present paper, we therefore investigated the self-similar flow behind a spherical shock wave 

propagation in a dusty gas, which is a mixture of small solid particles and non-ideal gas. The medium is 

assumed to be under a gravitational field due to heavy nucleus at the origin (Roche Model). The unsteady 

model of Roche consists of gas distributed with spherical symmetry around a nucleus having a large mass 

m. It is assumed that the gravitational effect of the mixture itself can be neglected compared with the 

attraction of the heavy nucleus. The total energy of the flow-field behind the shock is supposed to be 

increasing with time (Freeman, 1968; Director and Dabora, 1977). This increase can be obtained by the 

pressure exerted on the mixture by inner expanding surface (Rogers, 1958). In order to obtain the 

similarity solutions of the problem the density of the undisturbed medium is assumed to be constant. 

Effects of a change in the value of the parameter of non-idealness of the gas in the mixture  , the mass 

concentration of the solid particles in the mixture pk , the ratio of the density of the solid particles to the 

initial density of the gas 1G  and variation of parameter of gravitation h are obtained. 

Fundamental Equations and Boundary Conditions 
We consider the medium to be a mixture of small solid particles and a non-ideal gas. The solid particles 

are continuously distributed in the non-ideal gas and considered as pseudo-fluid. It is assumed that the 

velocity and temperature equilibrium conditions are maintained in the flow-field. The equation of state of 

the non-ideal gas in the mixture is taken to be (Anisimov and Spiner, 1972); Ranga and Purohit, 1976; 

Vishwakarma and Pandey, 2006). 
*

g g gp R (1 )  b T,                         (1) 

where gp  and g  are the partial pressure and partial density of the gas in the mixture, T is the 

temperature of the gas (and of the solid particles as the equilibrium flow condition is maintained), *R  is 

the gas constant and b  is the internal volume of the molecules of the gas. In this equation the deviations 

of an actual gas from the ideal state are taken into account, which result from interaction between its 

component molecules. It is assumed that the gas is still so rarefied that triple, quadruple, etc., collisions 

between molecules are negligible, and their interaction is assumed to occur only through binary collisions. 

The quantity b  is, in general, a function of temperature T, but at high temperature range it tends to a 

constant value equal to the internal volume of the gas molecules (Anisimov and Spiner, 1972; Landau and 

Lifshitz, 1958). The effects of dissociation and ionization of gas molecules are assumed to be negligible. 

The equation of state of the solid particles in the mixture is, simply, 

      sp cons  tant,             (2) 

where sp  is the species density of the solid particles. Proceeding on the same lines as in Pai (1977), we 

obtain the equation of state of the mixture as  

p *
p

(1 k )
p [1 b (1 k )] R T,

(1 )
 

z


    


                  (3) 

Where p and   are the pressure and density of the mixture, 
sp

m

V
Z

V
  is the volume fraction and 

sp

p
m

M
k

M
  

is the mass fraction (concentration) of the solid particles in the mixture, where spM  and  spV  are the total 

mass and the volumetric extension of the solid particles and mV  and mM  are the total volume and total 

mass of the mixture. 

The relation between pk  and Z is given by (Pai, 1977) 

sp
p

Z
k .





                       (4) 

In the equilibrium flow, pk  is constant in whole flow-field. Therefore, from (4)  
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Z
cons t tan


                        (5) 

in the whole flow-field. Also, we have the relation (Pai, 1977)  

p

p p

k
Z ,

G(1 k )
 

k


 
                                (6) 

where 
sp

g

G





 is the ratio of the density of solid particles to the species density of the gas. 

The internal energy per unit mass of the mixture may be written as  

m p sp p v vmU [k C (1 k )C ]T C T,                                                         (7)  

where spC  is the specific heat of solid particles, vC  specific heat of the gas at constant volume and vmC  

the specific heat of the mixture at constant volume process. 

The specific heat of mixture at constant pressure process is  

pm p sp p pC k C (1 k )C ,                      (8)  

where pC  is the specific heat of the gas at constant pressure process. 

The ratio of the specific heats of the mixture is given by (Pai et al., 1980; Pai, 1977; Marble, 1970) 

pm

vm

C (1 / )
,

C 1

  
   

 
                    (9)  

where  

p p sp

v p v

C k C
,   and     .

C (1 k ) C
     


                           (10  a-c)  

Now,  
*

pm vm p p v pC C (1 k )(C C ) (1 k )R ,                     (11) 

neglecting the term containing 2 2b   (Anisimov and Spiner, 1972). The internal energy per unit mass of 

the mixture is, therefore, given by  
*

p

m
p

(1 k )R Tp(1 Z)
U .

( 1)[1 b (1 k )] ( 1)


 
       

              (12) 

From the first law of thermodynamics and the equation of state (3), we may calculate the speed of sound 

in the mixture of non-ideal gas and small solid particles, as  
1/2

p 1/2

pS

{ (2 Z) b (1 k )}pdp
a ,

d (1 Z){1 b (1 k )}
[ ]
      

  
      

             (13)  

where 
dp

d
S



 
 
 

 denotes the derivative of  p with respect to   at constant entropy S. 

The compressibility (adiabatic) of the mixture may be calculated as (Moelwyn-Hughes (1961))  

  
p

S 2
p

(1 Z){1 b (1 k )}d(1/ ) 1
l .

dp { (2 Z)b (1 k )}pa
( )

   
   

     
                       (14) 

The equations of motion for one-dimensional adiabatic unsteady spherically symmetric flow of a mixture 

of non-ideal gas and small solid particles under the influence of a gravitational field are (Rogers, 1957; 

Vishwakarma, 2000) 
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u 2 u
u 0,

t r r r

   
   

  
                 (15)  

*

2

u u 1 p G m
u 0,

t r r r

  
   

   
                (16) 

m m

2

U U p
u u 0,

t r t r
( )   

   
   

                (17) 

where u is the flow velocity, r the radial distance, t the time, $m$m the mass of heavy nucleus at the 

centre and *G  the gravitational constant. Here, it is assumed that the gravitating effect of the medium 

itself is negligible in comparison with the attraction of the heavy nucleus. 

We consider that a spherical shock wave is propagating into a medium (mixture of small solid particles 

and non-ideal gas) of constant density 1  which is at rest. 

The pressure immediately ahead of the shock front is given by, from equation (16),  
*

1
1

mG
p ,

R


                    (18) 

where  R  is the shock radius. 

The jump conditions across the moving shock are as follows :  

21 1
2 2 2 1 1 2

Z
u (1 )R,   ,  p p (1 ) R ,  Z ,


        

 
                (19 a-d)  

where 
dR

R
dt

( )  denotes the shock velocity, and the subscripts “1” and “2” refer to the values just ahead 

and just behind the shock front. The quantity β is given by the equation  
2 2 2 2

p 1( 1) ( 1){1 (1 k )} [( 1) {2 M (2Z 1)}               

2 2 2 2 2
p 1 p2 ( 1) (1 k )( M Z ) ( 1) (1 k ) ( 1)]                

2 2
p 1[ ( 1) (1 k ){2( Z )M ( 1)}         

2 2 2 2
p( 1) ( 1) (1 k ) ( 2M )] 0,                       (20) 

where  

p

1
1 p p

k
Z ,

G (1 k ) k


 
                   (21) 

1b    is the parameter of non-idealness of the gas in the mixture, M is the shock-Mach number 

referred to the speed of sound in the dust-free ideal gas 1/21

1

p( )


, and 1G  the ratio of the density of the 

solid particles to the initial density of the gas. 

Also, the relation between M and the effective shock-Mach number eM  is  

2
2 e

1 p

1 p

M
M ,

(1 Z ){1 (1 k )}

{ (2 Z ) (1 k )}
[ ]


    

     

                (22)  

where eM  is defined by  

e
1 1 p 1/21

1 1 p

R R
M .

p { (2 Z ) (1 k )}a

(1 Z ){1 (1 k )}
[ ]

 
     

    

 
                (23) 
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The total energy E of the flow behind the shock is assumed to be varying as (Rogers, 1958; Freeman 

1968; Director and Dabora, 1977)  
s

cE E t ,                    (24) 

where s is a non-negative number and cE  a constant. The positive values of s correspond to the class in 

which the total energy increases with time. This increase can be achieved by the pressure exerted on the 

fluid by an expanding surface (a contact surface or a piston). This surface may be, physically, the surface 

of the stellar corona or the condensed explosives or the diaphragm containing a very high-pressure driver 

gas. By sudden expansion of the stellar corona or the detonation products or the driver gas into the 

ambient gas, a shock wave is produced in the ambient gas. The shocked gas is separated from this 

expanding surface which is a contact discontinuity. This contact surface acts as a „piston‟ for the shock 

wave. 

Similarity Solutions 

Following the general similarity analysis of Sedov (1959), we define two characteristic parameter „ *a ‟ 

and „b‟ with independent dimensions as  
* *

1[a ] [mG ],                 (25a)  

   

* 3/5c

1

E
[b] [mG ] .[ ] 


                                 (25b) 

The single dimensionless independent variable in this case will be  
* ** /2( mG ) rt ,                  (26a) 

where  

* 2 2 s
,

3 5


                  (26b)  

and α is constant to be determined by the condition that η assumes the value „1‟ at the shock front. 

Second of the equations (26b) show that the similarity solution of the present problem exists only when 

the total energy of the flow-field behind the shock increases as 4/3t , that is only when s = 4/3. 

From (26a), we find that  
*

2 4 mG
R ,

9R


               (27a)  

2dR R
.

dt 2R
 

 
                         (27b) 

From equations (18) and (27a), we obtain the following expression for α in terms of the shock-Mach 

number M :  
*

2 2

mG 9 1
.

4R R M
 

 
                 (28) 

The quantity 
9

( h,
4




 say) may be taken as a parameter of gravitation. 

To obtain similarity solutions, we write the unknown variables in the following form (Vishwakarma and 

Yadav, 2003b)  

u Rv( ),                  (29a)  

1g( ),                               (29b)  

2
1p R P( ),                  (29c) 

1Z Z g( ),                  (29d) 

where v, g and P are functions of the non-dimensional variable (similarity variable) η only. 
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The condition to be satisfied at the inner expanding surface is that the velocity of the fluid is equal to the 

velocity of the surface itself. This kinematic condition, from equations (26a) and (29), can be written as  

v( ) ,                     (30)  

where   is the value of   at the inner expanding surface. 

Using the similarity transformations (29), the equations of motion are transformed into 

2v
( v)g g v 0,( )     


                (31) 

2

v P 9
( v)v 0,

2 g 4


     


                (32) 

 
1 p

1 1
p

(2 Z g) g(1 k )( v)P
( v)(1 Z g)P g P(1 Z g) 0,

g 1 g(1 k )
[ ]
     

       
 

        (33) 

where a prime denotes differentiation with respect to η. 

From the equations (31) to (33), we have  
2

1 1

2

vg( v)(1 Z g) ( v)(1 Z g)M g
v

2
(

   
   


  

1 p 2
1 1

p

(2 Z g) g(1 k )2Pv
(1 Z g)P ( v) (1 Z g)g

1 g(1 k )
{ } ) /[
     

    
  

 

1 p

p

(2 Z g)g (1 k )
P ,

1 g(1 k )
{ }]
     


 

               (34) 

g 2v
g v ,

( v)
( )  

 
                  (35) 

2

2

vg M g
P ( v)v g .

2



    


                  (36) 

The transformed shock conditions are 

v(1) (1 ),                 (37a)  

1
g(1) ,


               (37b) 

 
2

1
P(1) (1 ),

M
  


                 (37c) 

where β is given by the equation (20). 

For exhibiting the numerical solutions, it is convenient to write the field variables in the non-dimensional 

form as  

2 2 2 2

u v( ) Z g( ) p P( )
, , .

u v(1) Z g(1) p P(1)

   
   


              (38a -c) 

The ordinary differential equations (34) to (36) with boundary conditions (37) can now be numerically 

integrated to obtain the solution for the flow behind the shock surface. 

 

RESULTS AND DISCUSSION 
The flow variables in the flow-field behind the shock are obtained by numerical integration of the 

equations (34) to (36) with boundary conditions (37) by Runge-Kutta method of order four. The values of 

the constant parameters for the purpose of numerical calculation are taken as γ = 1.4; 0  , 0.025, 0.05; 
2M  = 0.014, 0.14; pk  = 0, 0.2, 0.4; 1G  = 1, 10, 100; and   = 1. The case    = 0, pk  = 0 corresponds 



International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) 

An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 

2014 Vol. 4 (4) October-December, pp. 6-18/Vishwakarma and Pathak 

Research Article 

© Copyright 2014 | Centre for Info Bio Technology (CIBTech)  12 

 

to a perfect gas; the case  = 0, pk 0  to a mixture of a perfect gas and small solid particles; and the 

case 0  , pk 0  to a mixture of a non-ideal gas and small solid particles. The solutions are shown in 

figures 1-6. 

Figures 1 and 4 show that the reduced fluid velocity 
2

u

u
 is higher at the inner expanding surface than that 

at the shock front. Figures 2 and 5, and 3 and 6 show that the reduced pressure 
2

p

p
 and reduced density 

2




 decrease as we move inward from the shock front. 

As can be seen from equations (35) for g (non-dimensional density), there is a singularity at the inner 

expanding surface where v   , because this equation becomes singular there. The inner expanding 

surface is decelerating as its velocity 
dr

dt
 varies as, 1/3t  (from (26a)), and the derivative of density tends 

to negative infinity there (as shown in figures 3 and 6). This singularity can be physically interpreted as 

follows (Steiner and Hirschler, 2002) : the path of the decelerated inner surface diverges from the path of 

the particle immediately ahead rarifying the gas. This can also the interpreted from the adiabatic integral 

as follows : 

By taking certain linear combinations of equations (31) and (33), we can obtain the adiabatic integral, for 

pk 0 , 

 

1
( )

1/3 2/33Cg (1 g) P( v) ,


                   (39) 

where C is a constant to be determined by (37). This relation shows that as the inner surface (at which 

v   ) is approached, the non-dimensional density g tends abruptly to zero. 

The quantity h which is a parameter of gravitation depends upon   and M and is tabulated in table 1 at  γ 

= 1.4 and 2M  = 0.014, 0.14. The density ratio β across the shock front is tabulated in table 2 at γ = 1.4, 

  = 1 and at various values of  h,  , pk  and 1G . Positions of inner expanding surface   are shown in 

the table 3 at different values of  , pk , h and 1G . The initial dimensionless compressibility of the 

mixture  

1 p1
1 2

1 p1 1

(1 Z ){1 (1 k )}p
,

{ (2 Z )(1 k ) }a

  
 

     
l                 (40) 

is calculated for various values of  , pk  and 1G , and tabulated in table 4. 

It was found that the effects of an increase in the value of the parameter of the non-idealness of the gas   

are 

(i) to increase the value of  β, i.e. to decrease the shock strength (see table 2);  

(ii) to increase the reduced velocity 
2

u

u
, reduced pressure  

2

p

p
 and reduced density 

2




 at any point in 

the flow field-field behind the shock (see figures 1 to 3); and  

(iii) to increase the distance of inner expanding surface from the shock front (see table 3).  

This concludes the same result as in (i), i.e. an increase in   decreases the shock strength. Actually, an 

increase in  , decreases the compressibility of the initial medium (see table 4) and this decrease of 

compressibility results in the decrease of shock strength. 

It was found that the effects of an increase in pk , the mass concentration of the solid particles in the 

mixture are 
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(i) to increase the value of β when 1G 1  and to decrease it, when 1G  is higher (≥10) (see table 2);  

(ii) to increase  , i.e. to decrease the distance of inner expanding surface from the shock front, when 1G  

(≥ 10). At  1G 1 , the effects is of opposite nature;  

(iii) to decrease the initial dimensionless compressibility of the mixture when 1G 1 , and to increase it, 

when 1G  is higher (≥ 10) (see table 4); and  

(iv) to decrease reduced pressure 
2

p

p
 and reduced density 

2




 when 1G 10  (see figures 1 to 3).  

The effects of an increase in 1G , the ratio of the density of the solid particles to the initial density of the 

gas, are 

(i) to decrease the distance between the shock front and the inner expanding surface (see table 3);  

(ii) to decrease β, i.e. to increase the shock strength (see table 2);  

(iii) to increase the dimensionless compressibility of the initial medium 1l . Physically, this decrease in 1l  

causes more compression of the medium behind the shock, which results in the increase of the shock 

strength (see table 4); and  

(iv) to decrease the reduced velocity 
2

u

u
, reduced pressure 

2

p

p
 and reduced density 

2




 at any point in 

the flow-field behind the shock (see figures 4 to 6).  

 

Table 1: Values of h (a parameter of gravitation) for different values of 2M  and  γ = 1.4  

 2M  0.014 0.028 0.07 0.14 

 H 0.01 0.02 0.05 0.1 

  

Table 2: Density ratio β across the shock front for h = 0.01,0.1;   = 0, 0.025, 0.05; pk  = 0, 0.2, 0.4; 

1G  = 1, 10, 100; γ =1.4; and   = 1 

   
pk  1G  h β 

 0 0 - 0.01 0.178333 

   0.1 0.283333 

 0 0.2 10 0.01 0.170345 

   0.1 0.272758 

 0.025 0 - 0.01 0.196795 

   0.1 0.302420 

 0.025 0.2 1 0.01 0.327958 

   0.1 0.432168 

 0.025 0.2 10 0.01 0.183793 

   0.1 0.287264 

 0.025 0.2 100 0.01 0.166608 

   0.1 0.269650 

 0.025 0.4 1 0.01 0.477373 

   0.1 0.578098 

 0.025 0.4 10 0.01 0.181885 

   0.1 0.285666 

 0.025 0.4 100 0.01 0.135556 

   0.1 0.235888 

 0.05 0.2 10 0.01 0.195295 

   0.1 0.300082 
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Table 3: Position of inner expanding surface   at different value of  , h and 1G   

   
pk  1G  h   

 0 0 - 0.01 0.909622 

   0.1 0.853079 

 0 0.2 10 0.01 0.916010 

   0.1 0.860021 

 0.025 0 - 0.01 0.902854 

   0.1 0.845492 

 0.025 0.2 1 0.01 0.855875 

   0.1 0.792908 

 0.025 0.2 10 0.01 0.910958 

   0.1 0.854204 

 0.025 0.2 100 0.01 0.917131 

   0.1 0.861101 

 0.025 0.4 10 0.01 0.915722 

   0.1 0.857532 

 0.05 0.2 10 0.01 0.906430 

   0.1 0.848873 

 

Table 4: Variation of initial dimensionless compressibility 1l  for different values of  , pk  and  1G  

   
pk  1G  1l  

 0 0 - 0.714285 

  1 0.606060 

 0 0.2 10 0.739090 

  100 0.755757 

 0 0.4 1 0.483871 

  10 0.756048 

  100 0.801129 

 0.025 0 - 0.697278 

 0.025 0.2 1 0.596143 

  10 0.725429 

  100 0.741249 

 0.025 0.4 1 0.479075 

  10 0.745585 

  100 0.789523 

 0.05 0 - 0.681818 

 0.05 0.2 1 0.586907 

  10 0.712488 

  100 0.727815 

 0.05 0.4 1 0.474509 

  10 0.735700 

  100 0.738456 

  

The effects of increasing the parameter of gravitation h are 

(i) to decrease the shock-Mach number M (see table 1);  

(ii) to increase the value of  β, i.e. to decrease the shock strength (see table 2);  

(iii) to increase the distance of inner expanding surface from the shock front (see table 3); and  
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(iv) to increase the reduced pressure 
2

p

p
 and reduced density 

2




 and to decrease the reduced velocity 

2

u

u
 at any point in the flow-field behind the shock (see figures 1 to 6).  

Nomenclature 
a speed of the sound in the mixture 

*a  characteristic parameter 

b characteristic parameter 

b  internal volume of the molecules of the gas 

C constant 

pC  specific heat of the gas at constant pressure 

spC  specific heat of solid particles 

vC  specific heat of the gas at constant volume 

vmC  specific heat of the mixture at constant volume process 

E total energy 

cE  constant 

g non-dimensional fluid density variable 

G ratio of the density of solid particles to the species density of the gas 
*G  gravitational constant 

h parameter of gravitation 

pK  mass fraction of the solid particles in mixture 

l compressibility of the mixture 

m mass of heavy nucleus at the centre 

M shock-Mach number 

eM  effective shock-Mach number 

mM  total mass of the mixture 

spM  total mass of the solid particles 

p pressure of the mixture 

gp  partial pressure of the gas in the mixture 

P non-dimensional fluid pressure variable 

r radial distance 

r  value of r at inner expanding surface 

R shock radius 

R  shock velocity 
*R  gas constant 

s non-negative number 

S constant entropy 

t time 

T temperature of the gas 

mU  internal energy per unit mass 

u flow velocity 

v non-dimensional fluid velocity variable 

mV  total volume of the mixture 

spV  volumetric extension of the solid particles 
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Z volume fraction of the solid particles in the mixture 

 

α constant 

  parameter of non-idealness of gas in the mixture 

β density ratio across the shock 

  ratio of specific heat 

Γ ratio of specific heats of the mixture 

γ ratio of specific heats of the gas 
*  constant 

  density of the mixture 

g  partial density of the gas in the mixture 

sp  density of the solid particle 

g  density of the gas 

η dimensionless independent variable 

  value of η at the inner expanding surface 

Subscripts 
0 reference state 

1 ahead of the shock 

2 behind the shock 

Superscripts 

 differentiation with respect to η 

 

 

 

Figure 1: Variation of redused velocity   in 

the flow-field behanid the shock front for G1 = 

10 

Figure 2: Variation of reduced pressure  in 

the flow-field behind the shock front for G1= 

10  
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Figure 3: Variation of reduced density  in 

the flow-field behind the shock front for G1= 10 
Figure 4: Variation of reduced velocity  in 

the flow-field behind the shock front for 

=0.025 

 

    
 

Figure 5: Variation of reduced pressure  in 

the flow-field behind the shock front for 

=0.025 

Figure 6: Variation of reduced density  in 

the flow-field behind the shock front for = 

0.025 
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