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ABSTRACT 

The present study deals with the unsteady MHD boundary layer flow over a stretching plate. The governing 

nonlinear partial differential equations of the physical problem are presented and then converted into nonlinear 

ordinary differential equations by using similarity transformations. The resulting ordinary differential equations 

are successfully solved using He’s homotopy perturbation method (HPM). The main advantage of HPM is that 

it does not require the small parameters in the equations, and hence the limitations of traditional perturbation 

can be eliminated. The results reveal that the proposed method is very effective and simple and can be applied 

to other nonlinear problems. The influence of various relevant physical characteristics is presented and 

discussed. 
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NOMENCLATURE 

A Unsteady parameter (= b a)⁄ , [─] 

a, b Constant, [─] 

B0 Constant applied magnetic field, [Wb m−2 ] 
f Dimensionless stream function, [─] 

M           Magnetic parameter (= σeB0
2 aρ⁄ ), [−] 

t           Dimensionless time, [s] 

U           Free stream velocity, [m s−1] 

u, v          Velocity component of the fluid along the x and y directions, respectively, [m s−1] 

x, y     Cartesian coordinates along the surface and normal to it, respectively, [m]  

Greek symbols  

ρ           Density of the fluid, [Kg m−3 ] 
υ       Kinematic viscosity, [m2 s−1]   

σe        Electrical conductivity, [m2s−1] 
η       Dimensionless similarity variable, [= (Uw νx⁄ )1/2] 

Ψ               Stream function, [= (Uwνx)
1

2f(η)]  
Superscript  

′   Derivative with respect to η  

Subscripts: 

w        Properties at the plate 

∞               Free stream condition 

 

INTRODUCTION  

The phenomenon of magnetohydrodynamic (MHD) boundary layer flow over a stretching sheet involving 

incompressible fluids is a common occurrence in various engineering and industrial applications. Over the past 

few decades, this field has garnered significant attention from researchers due to its relevance in numerous 

industries, such as aerodynamic extrusion of polymer sheets, hot rolling processes, cooling of metallic plates in 
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cooling baths, liquid film boundary layers in condensation, and the production of glass fibers Tadmor and Klein 

(1970), Fisher (1976), Alten and Gegrl (1979). The cooling of continuous filaments in metallurgical processes 

by drawing them through a quiescent fluid plays a pivotal role in determining product mechanical properties. 

Notably, Sakiadis (1961) laid the foundation for the study of stretching sheets and boundary layer flows. 

Indeed, MHD laminar boundary layer behaviour over a stretching surface holds great practical significance in 

fields like chemical engineering, electrochemistry, and polymer processing. Gupta and Gupta (1977) delved into 

the magnetic field's influence on boundary layer flow over a stretching sheet, while Anderson (1992) explored 

the effects of porosity in the presence of conducting fluid particles on the stretching sheet. Ariel (1994) 

investigated the combined impacts of viscoelasticity and magnetic fields on the Cranes problem. Since 

stretching can occur in various ways, the flow across a stretched sheet need not always have two dimensions; if 

the extension is radial, it can be three. Wang (1984) examined a flat surface with three stretches of the same 

width, and Brady and Acrivos (1981) monitored flow both inside and outside the channel or tube, as well as the 

Wang (1988) flow beyond the tube's performance region. Wang (1990) and Usha and Sidharan (1995) 

experimented with the unstable stretching sheet, and Ariel et al. (2006) employed HPM and extended HPM 

methods to derive solutions for analyzing axisymmetric flow across the flat layer of the boundary layer. Ariel 

(2004) provided a noniterative solution for MHD boundary layer flow over a stretching sheet. 

Magnetohydrodynamics (MHD) investigates the interaction of electromagnetic conditions with the transfer of 

heat in liquids, particularly conducting fluids, and has crucial applications in fields such as MHD power 

generation, MHD generators, and MHD pumps. In recent times, many researchers have focused on different 

aspects of boundary layer flow Sheikholeslami and Ellahi (2015), Javed and Nadeem (2019), Siavashi et al. 

(2019), Subhani and Nadeem (2019), Sadiq et al. (2019), Jhankal (2022), considering the MHD effects in 

various scenarios with stretching sheets. Furthermore, numerous scientists have explored the influence of MHD 

and heat transfer on a range of boundary layer flows for different parameter sets Ahmad et al. (2017), 

Hosseinzadeh et al. (2021, 2020). Jhankal and Kumar (2013, 2015) examined the impact of magnetic fields in 

conjunction with stretching surfaces. 

Nonlinear phenomena play a prominent role within the boundary layer flow regime. Addressing these nonlinear 

equations necessitates alternative methods due to the scarcity of precise analytical solutions, except for a limited 

subset with established accuracy. It is widely acknowledged among the scientific community that a combination 

of numerical and semi-exact analytical techniques can yield valuable insights. In this research, we introduce and 

employ a semi-exact methodology known as the Homotopy Perturbation Method (HPM) to investigate the 

boundary layer flow over a stretched vertical surface with heat flux. The foundation of HPM was laid by J. H. 

He (1998, 2000, 2001, 2005, 2009), and subsequent studies by researchers such as Ganji and Rajabi (2006), 

Ganji and Sadighi (2006), Ariel et al. (2006), Zhang and He (2006), Ganji and Ganjin (2008), Beléndez et al. 

(2008), Ma et al. (2008), Siddiqui et al. (2008), Zhang et al. (2008), and Jhankal (2014, 2015) have been 

inspired to utilize this method in addressing nonlinear equations. 

In the context of the current investigation, we explore the problem of unsteady boundary layer flow over a 

stretching plate under the influence of a transverse magnetic field. We employ the Homotopy Perturbation 

Method (HPM) to delve into this matter. The study examines the influence of various relevant parameters and 

provides insights and discussions on their effects. 

1.1 Basic idea of homotopy perturbation method (HPM): 

To illustrate the basic ideas of the HPM, we consider the following nonlinear differential equation.

 A(u) − f(r) = 0, r ∈ Ω            …(1) 

Subject to the boundary conditions 

 B (u,
∂u

∂η
) = 0, r ∈ Γ          …(2)    

Where A is a general differential operator, B is a boundary operator, f(r) is a known analytical function 

and Γ is the boundary of the domain Ω. A can be divided into two parts which are L and N, where L is 

linear and N is nonlinear. Therefore equation (1) can be rewritten as follows: 
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  L(u) + N(u) − f(r) = 0, r ∈ Ω           …(3) 

By the homotopy perturbation technique, we construct a homotopy 

 v(r, p): Ω × [0,1] → R, which satisfies: 

 H(v, p) = (1 − p)[L(v) − L(u0)] + p[A(v) − f(r)] = 0,   p ∈ [0, 1], r ∈ Ω …(4) 
Where p ∈ [0, 1] is an embedding parameter and u0 is an initial approximation that satisfies the boundary 

condition. Obviously, from these definitions we will have:  

 H(v, 0) = L(v) − L(u0) = 0 

  H(v, 1) = A(v) − f(r) = 0  

The changing process of p from zero to one is just that of v(r, p) from u0(r)  to u(r). In topology, this is called 

deformation and L(v) − L(u0) and  A(v) − f(r) are called homotopy. According to the HPM, we can first use 

the embedding parameter p as a “small parameter” and assuming that the solution of (4) can be written as a 

power series in p: 
 v = v0 + pv1 + p2v2…         …(5) 

Setting p = 1, results in the approximate solution of (1): 

 u = lim
p→1

v = v0 + v1 + v2 + ⋯       …(6) 

The convergence and stability of this method was shown in Hosein Nia et al. (2008). 

 

1. MATHEMATICAL FORMULATION OF THE PROBLEM 

Consider an unsteady; two dimensional boundary layer flows over a stretching plate of a viscous incompressible 

electrically conducting fluid, when t = 0, the plate is impulsively stretched with the velocity Uw,  where the x-

axis is along the stretching plate and y-axis perpendicular to it, the applied magnetic field B0 is transversely to 

x-axis. The magnetic Reynolds number for this flow has been deliberately kept at a low value to enable us to 

disregard the influence of any induced magnetic field. Within the framework of the boundary layer 

approximation, the governing equations for both fluid continuity and momentum under the influence of 

externally applied transverse magnetic field are: 
∂u

∂x
+

∂v

∂y
= 0               …(7) 

∂u

∂t
+ u

∂u

∂x
+ v

∂v

∂y
= υ

∂2u

∂y2 −
σeB2

ρ
u               …(8) 

Along with the boundary conditions for the problem are given by: 

 y = 0: u = Uw, v = 0  

 y → ∞: u = 0                                                                                                      …(9) 

Here, we assume the stretching velocity Uw(x, t) is of the form: Uw(x, t) =
ax

1−bt
 , where a and b are constants 

with a > 0 and b ≥ 0 (with bt < 1).  

The continuity equation (1) is satisfied by introducing a stream function Ψ such that u =
∂Ψ

∂y
 and v= −

∂Ψ

∂x
 .  The 

momentum equation can be transformed into corresponding nonlinear ordinary differential equation by using 

the following transformations:  η = (
Uw

νx
)

1/2
y, f(η)=

Ψ

(Uwνx)1/2 , and B =
B0

√1−bt
   …(10) 

Substituting in (8), then the transformed non-linear momentum equations is:  

  f ′′′ + ff ′′ − f ′2
− A (f ′ +

1

2
ηf ′′) − Mf ′ = 0      …(11)  

The transformed boundary conditions are: 

 η = 0: f = 0, f ′ = 1 

 η → ∞: f ′ = 0                 …(12) 

Where prime denotes differentiation with respect to η, M =
σeB0

2

aρ
 is the magnetic parameter, and A =

b

a
  is the 

unsteadiness parameter.         
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SOLUTION WITH HOMOTOPY PERTURBATION METHOD: 

According to the HPM, the homotopy form of equation (11) is constructed as follows: 

(1 − p)[f ′′′ − Af ′ − Mf ′] + p [f ′′′ + ff ′′ − f ′2 − A(f ′ +
1

2
ηf ′′) − Mf ′] = 0     …(13) 

We consider f as the following:  

f = f0 + pf1 + p2f2 …          …(14) 

By substituting equation (14) into (13), and then  

(I)  Terms independent of  p give 

f0
′′′ − (A + M)f0

′ = 0           …(15) 

The boundary conditions are 

 f0(0) = 0, f0
′ (0) = 1, f0

′ (∞) = 0.          …(16) 

(II) Terms containing only p give 

f1
′′′ − f0

′2 + f0f0
′′ −

A

2
ηf0

′′ − (A + M)f1
′ = 0          ...(17) 

The boundary conditions are  

f1(0) = 0, f1
′ (0) = 0, f1

′ (∞) = 0.                ...(18) 

(III) Terms containing only p2 give 

f2
′′′ − 2f0

′ f1
′ + f0f1

′′ + f1f0
′′ −

A

2
ηf1

′′ − (A + M)f2
′ = 0          ...(19) 

The boundary conditions are  

f2(0) = 0, f2
′ (0) = 0, f2

′ (∞) = 0.                           ...(20) 

(III) Terms containing only p3 give 

f3
′′′ − f1

′2 − 2f0
′ f2

′ + f2f0
′′ + f0f2

′′ + f1f1
′′ −

A

2
ηf2

′′ − (A + M)f3
′ = 0        ...(21) 

The boundary conditions are  

f3(0) = 0, f3
′ (0) = 0, f3

′ (∞) = 0.                           ...(22) 

The equations (15), (17), (19), and (21) are solved with boundary conditions (16), (18), (20), and (22) 

respectively, the boundary condition η = ∞ were replaced by those at η = 4 in accordance with standard practice 

in the boundary layer analysis. If p → 1, we can find the approximate solution of equations (11). 

 

RESULTS AND DISCUSSION 

To gain a deeper understanding of the problem, we have represented our numerical calculations through non-

dimensional velocity profiles. These calculations have been executed across various settings, encompassing 

different values of two key parameters: the magnetic field parameter (M) and the unsteady parameter (A). 

 

 
Figure 1: Velocity profile for various values of 

M, when A=1.5. 

 
Figure 2: Velocity profile for various values of 

A, when M = 1. 
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In Figure 1, we illustrate how the magnetic parameter (M) influences the velocity profile for a fixed value of 

A, which is set at 1.5. Upon closer examination of this figure, it becomes evident that the dimensionless 

velocity f’(η) experiences a decline as M increases. This behaviour is attributed to the Lorentz force, an 

outcome of the interaction between the magnetic and electric fields that transpires during the motion of  

electrically conducting fluid. This force exerts a decelerating effect on the fluid's motion within the boundary 

layer. 

Moving on to Figure 2, we shift our focus to the unsteady parameter (A) and its impact on the velocity 

profile, with M fixed at 1. Our analysis of this graph reveals that as A increases, the velocity experiences a 

reduction. 

 

CONCLUSIONS 

In the present study, we entail the formulation of a mathematical model to analyze the unsteady boundary 

layer flow over a stretching plate, subject to the effects of a transverse magnetic field. To tackle this problem, 

the governing momentum equation is converted into a nonlinear ordinary differential equation using a 

similarity transformation. This transformed equation is subsequently addressed through the application of 

He's Homotopy Perturbation Method (HPM). The results are then visualized in graphical representations, 

which shed light on the impact of magnetic and unsteady parameters on the velocity profile. The key 

takeaway from this investigation is that an increase in magnetic field strength (M) and unsteady parameter 

(A) leads to a reduction in the velocity gradient at the plate's surface. 
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