Research Article

STRATEGIC PLANNING FOR DEVELOPMENT OF RURAL TOURISM OF NORTH ASTAR ABAD DISTRICT OF GORGAN WITH SWOT AND FUZZY QSPM METHOD

*Hossein Sadin¹, Ahmad Zanganeh², Abdolhamid Neshat³ and Hamid Reza Talkhabi²

¹Department of Geography and Rural Planning, Gonbad-e Kavus, GPNU, Iran ²Department of Geography, Kharazmi University, Tehran, Iran ³Department of Geography, University of Tarbiat Modares, Tehran, Iran *Author for Correspondence

ABSTRACT

Tourism is naturally used as a means for stimulation of marginal economy as well as promotion and development through job and income which can be developed. A comprehensive view is required to develop the entire structure of tourism and strategic management of corresponding functions, in the manner that it is consistent with natural texture and cultural and social environment of performance field of tourism industry. It is only in this way that tourism industry can play a major role in reducing the negative consequences caused by pressures on natural resources, in parallel with stabilization of the economy of different populations and this requires a certain strategy to achieve this goal. The goal of this paper is to formulate strategies for rural tourism planning. Research method in the present research is an analytic and descriptive method of applied type. To conduct this research, two methods, namely documentary and field methods have been used to obtain, analyze and incorporate data. SWOT analysis model was used to identify internal advantages and disadvantages and external opportunities and threats. Then, the most prior strategies were extracted by using Fuzzy QSPM.

Keywords: Rural Planning, Tourism, Strategic Planning, North Astar Abad Rural District

INTRODUCTION

As a series of economic activities, tourism development has a significant effect on the improvement of economic bases of populations. The role of tourism as a new source of income, collection of more taxation incomes, attraction of foreign exchange and improvement of social infrastructures that result in growth and development of industries has been confirmed in different studies (Hall and Page, 2014; Smith, 2014; Thurlow and Jaworski, 2010; Jennings, 2001), in the manner that tourism development and promotion has been widely accepted today in the developing countries. Today, tourism development is addressed in all fields by government planners and private companies (Huybers, 2007). Development of this industry in industrial companies will result in diverse incomes and reduced inconsistency in economy (Akama, 2007; Carbone, 2005). In the developing countries it is also considered as an opportunity for export, generation of foreign exchange and providing employment. Considering their important role in national production and employment, geographical extensiveness and their considerable population, villages should enjoy a special position in the national development system (Ghimire, 2013).

Rural dwellings have been formed under the influence of different natural, social, cultural, historical and economic factors. This is while the process of social, economic and cultural developments within the recent decades on the one side, and diversity of geographical bed in our country on the other side have formed an imbalanced spatial system throughout rural dwellings (Zhou and Huang, 2004; Roberts and Hall, 2001). Moreover, by the increasing development of rural immigrations, reduced income of rural households and decline of rural farming, there is an increasing need to an alternative and at the same time supplementary activity for agriculture in the rural zones so that the grounds for villagers to enjoy a sustainable livelihood are provided and this will in turn result in improved life quality and satisfaction of villagers (Latkova and Vogt, 2012; Contini *et al.*, 2009; Liu, 2006). On the other hand, rural development planning requires the process of evaluation and review in critical thinking of rural development so that the

Research Article

grounds for formation of the best intervention strategies in rural zones are provided for efficient results of planning process (Bel et al., 2015). Therefore, establishment and improvement of a hierarchy of dwellings in parallel with appropriate organization of rural spaces has always been addressed in most of the national civil plans (Lee, 2013; Ohe and Kurihara, 2013).

Tourism development as a new strategy in rural development lands in Iran can play an important role in diversification of economy in rural communities and can provide the grounds for establishment of new opportunities in rural zones including profitable employment in non-agricultural sectors, increased income of villager and reduced income differences between villagers and urban dwellers, reduced immigration of villagers to the cities and reduction of problems and difficulties in large cities. However, if rural tourism can play well all the assigned roles, it can create or stimulate a developed process to achieve development stability in rural districts and sustainability of local communities in all economic, social and cultural sub-branches as well as tourism industry.

The position of tourism industry in rural development is important because by suitably enjoying natural and human resources, in addition to economic growth, we can promote agricultural sector and produce local handicrafts and we can also take a step towards improvement of environmental conditions and guarding cultural and native inheritances and local traditions in the villages (Hwang and Lee, 2015). This becomes more important in the villages where agricultural activities are deprived from enjoying optimum agriculture or good income thanks to climatic or other conditions. In addition, rural tourism can provide the grounds for improvement of rural development process by providing supplementary activities in agricultural sector, employment and increased income of rural households in rural participation in the process of tourism attraction.

Rural Tourism

Rural tourists can be called to those tourists who reside in or in the vicinity of a village and collect information about the life and local environment of that village; or it can be called to those tourists who live with farmer families and learn about agricultural activities or those tourists who live in a fishing village with fisher families and go to fishing with them can be considered as rural tourists (Haven-Tang and Jones, 2012). However, we should not be unaware of the fact that rural tourism can encompass a wide range of different types of tourism (Komppula, 2014).

Nature tourism	It is mainly related to ecologic attractions.						
Culture tourism	It is related to culture, history, cultural and ancient heritage of villagers.						
Native tourism	It is some kind of tourism which is both associated with natural attractions such						
	as river, mountains, etc. and social life and norms of people which are in turn associated with the above natural attractions.						
Village tourism	In this type of tourism, tourists live with the villager families and participate in social and economic activities of the village.						
Agriculture tourism	In this type of tourism, tourists interact without causing any negative consequences on the ecosystem of host areas or traditional agricultural activities and participate in those activities.						

There are several definitions of rural tourism. In a general sense, rural tourism can be considered as tourism activities in the village environment or it can be defined in a broader applied field as tourism activities in non-urban area in which human activities (land-dependent economy) especially agriculture is current (Cawley and Gillmor, 2008; Page and Getz, 1997); however, it should be noted that according to the above definitions, if we want to restrict all tourism activities only to the village environment, we will not be able to understand all its aspects though in larger dimensions such as non-urban environment, we have set together several different types of tourism without any rational relation (Randelli *et al.*, 2014; Sharpley, 2002). On this basis and by considering village environment and its suburbs, rural tourism can

Research Article

be defined as follows. Rural tourism includes different tourism activities and types in different rural environments and their suburbs that include different values and effects to village environment (Park and Yoon, 2009; Roberts and Hall, 2001). On this basis, rural tourism can be considered to include different grounds of tourism activities such as dwellings, events, festivals, sports and different entertainments that form in the village environment (Table 1).

In general, rural tourism can be addressed from two aspects; one for rural environments and their suburbs in which the tourists find an opportunity to spend their leisure times in the village free from urban crowed and technology and the other for land-dependent rural economy which can experience other ways. Study Area

Gorgan city is located in the south part of Golestan province. This city is limited to Agh Ghala and Torkaman cities in the north, Semnan province in the south, Aliabad city in the east and Kordkouy city in the west. The area of Gorgan city is 1615/8 km² (7.91% of the area of province). Based on the national divisions in 2010, it consists of two districts, namely central district and Baharan district, three cities including Gorgan, Sorkhankalateh and Jalin, five rural districts and 98 villages. About 37% of the total population of Gorgan resides in rural districts and about 63% live in urban areas. Rural areas of central district of Gorgan include South Astar Abad with Jalin Oliya as its center, Roshanabad with Lamesk as its center, and Anjirabad with Zangian as its center. Rural areas of Baharan district include North Astar Abad with Sorkhankalateh as its center and Ghorogh with Nodeh Malek as its center. In this study, North Astar Abad rural area and its villages which are the suburbs of Baharan district were selected for rural tourism planning (Figure 1). Based on the census, the population of this rural area includes 17,553 people.

Figure 1: Map of the Position of Study Area

MATERIALS AND METHODS

Methodology

Strengths, Weaknesses, Opportunities, and Threats (SWOT) analyzing method is one of the strategic and assessment planning models developed by Faculty of Business-Harvard university. It is also a management tool suitable for codification strategic performance programs (Jackson et al., 2003). SWOT

© Copyright 2014 | Centre for Info Bio Technology (CIBTech)

Research Article

method spots internal weaknesses and strengths and also determines external threats against the residential complex. This is based on the logic behind the decision to use the model that is an effective strategy and supposed to maximize opportunities and chances and minimize weaknesses and threats (Chen *et al.*, 2014; Terrados *et al.*, 2007). The most common result of the model is development of a rational framework for systematic navigation of issues and debates regarding the residential complex and different strategies, where the final result is choosing the best method (Chang and Huang, 2006).

The factors under consideration were organized in a questionnaire using Likart's. The statistic society was grouped in two a: managers and experts in rural tourism fields; b: academic experts.

Having the sample society determined, internal factors evaluation (IFE) and external factors evaluation (EFE) matrices were created and the experts from the two groups were consulted in ranking the factors from too high to too low. The results showed that context was a factor of external and internal factors. Then, comparative assessment was used to examine SWOT matrix through ST, WO, ST, WT Strategies. Afterward, the strategy with highest priority for designing reservoir of ides for rural tourism was obtained using QSPM matrix.

RESULTS AND DISCUSSION

Results

SWOT Matrix

The matrix classified internal factors as strengths and weaknesses and external factors as opportunities and threats. This analysis of strategy environment is known SWOT technique. Strength and weakness points of rural tourism resist threats or overcome them and enjoy the resultant opportunities. On the other hand, Strategies act as mediator between internal and external factors.

Strengths

S1) Beautiful and unique landscapes along with green space and gardens

S2) Altitudes and high peaks for sports and recreations such as skiing, mountain climbing

S3) Abundant water resources and recreation attractions, sports and recreations such as fishing and swimming

S4) Easy and suitable access and welfare facilities for tourist attraction

S5) River as a natural attraction, a calm environment

S6) Historical places with traditional and religious ceremonies and local culture

S7) A suitable market for selling agricultural products and weekly markets *Weaknesses*

W1) Unsuitable accommodation and welfare facilities and equipment

W2) Unsuitable health and service facilities

W3) People not interested in investing in tourism

W4) Unsuitable welfare installations and equipment

W5) Lack of experienced and specialized staff for tourism

W6) Unsuitable distribution of tourists in different seasons

W7) Unsuitable environmental and structural infrastructures

W8) Lack of any governmental planning and investments

W9) Conflicts between tourists' culture and villagers' cultures

W10) Tendency of most of the people in private use

Total

Opportunities

01) Increased motivation for traveling to and recreation in these areas

02) Cities with relatively high populations in the vicinity

03) Increased attention of government to planning and investment in tourism sector

04) Increased motivation of private sector to invest in these areas

05) Specialized and experienced staff in the vicinity of these areas

06) Public and private institutions and organizations in the neighboring cities

© Copyright 2014 / Centre for Info Bio Technology (CIBTech)

Research Article

07) No desirable services and facilities are offered to tourists in the competitive recreation areas *Threats*

T1) Increased facilities and services in the competitive recreation areas

T2) No license or facilities provided by government

- T3) Increased tendency and motivation of tourists to travelling to other close recreation areas
- T4) Overpopulation of these areas as compared to competitive areas

T5) Contamination of water, soil and climate

T6) Increased social violations upon entry of tourists

T7) Destruction of trees and vegetation, destructive effects

T8) Destruction of agricultural lands and village farms

T9) Destruction of traditional and local cultures (local language and traditions)

Total

Internal Factors Evaluation (IFE) and External Factors Evaluation (EFE) Matrices

Taking into account disadvantages of SWOT analysis and to improve its efficiency, a list of factors of SWOT was obtained after consulting with experts and scholars based on Likart's. Afterward, relative weight of each factors was obtained using the following relations:

Equation 1. $R_{ij} = \sum Si F_i$

Equation 2.

$$\mathbf{Y}_{ij} = \frac{R_{ij}}{\sum R_{ij}}$$

 R_{ii} is the variable rate of j in group i

S_i is five categories in Likert's score

Y_{ij} is final weight of j factor in group i

The method, among the many, is used to quantification of SWOT factors, which also enables positional assessment of relative importance of the factors in each group (Table 2 and 3). In general, evaluation of decision making situations was combined with SWOT.

Strengths				Weaknesses				
	Relative Weight	Score	Final Weight		Relative Weight	Score	Final Weight	
S1	0.224	4	0.896	W7	0.078	2	0.156	
S2	0.174	4	0.696	W2	0.152	2	0.304	
S 3	0.125	2	0.25	W9	0.106	1	0.106	
S4	0.109	1	0.109	W8	0.057	3	0.171	
S 5	0.098	3	0.294	W13	0.042	4	0.168	
S6	0.183	2	0.366	W5	0.091	3	0.273	
S7	0.087	2	0.174	W1	0.103	2	0.206	
				W6	0.098	3	0.294	
				W10	0.035	1	0.035	
				W3	0.068	2	0.136	
				W4	0.107	4	0.428	
				W11	0.063	2	0.126	
sum	1		2.785	sum	1		2.403	

Table 2: Internal factors evaluation for rural tourism

© Copyright 2014 | Centre for Info Bio Technology (CIBTech)

Research Article

Opportunities				Threats					
	Relative Weight	Score	Final Weight		Relative Weight	Score	Final Weight		
01	0.125	3	0.375	T1	0.191	3	0.573		
02	0.204	4	0.816	T2	0.165	3	0.495		
03	0.135	2	0.27	Т3	0.106	2	0.212		
O4	0.106	3	0.318	T4	0.067	4	0.268		
05	0.092	4	0.368	Т5	0.127	1	0.127		
O6	0.213	4	0.852	T6	0.095	2	0.19		
07	0.125	1	0.125	T7	0.061	1	0.061		
				T8	0.124	1	0.124		
				Т9	0.064	2	0.128		
sum	1		3.124	sum	1		2.178		

Table 3: External factors evaluation for rural tourism

Table 4: Strategies for rural tourism

SO Strategies

1) Emphasis on the development of nature tourism and ecotourism

2) Optimal and targeted utilization of increased motivation among citizens in parallel with efficient use of natural and human attractions

3) Use of specialized staff in order to establish popular cooperative formations

6) Major concentration of tourism activities on the use of natural attractions without rural utilization for providing employment and obtaining income

ST Strategies

1) Diversification of tourism activities, facilities and services in order to use a broad range of people and to satisfy the tourists

2) Development of agricultural tourism in order to utilize rural landscapes, gardens and green space in parallel with obtaining income and providing employment

3) Diversification of publicity programs in order to introduce tourism attractions and products of this sector and to attract tourists

4) Capability and determination of a desirable limit for population density in the recreational centers in the studied villages and assigning the works to native people WO Strategies

1) Review of the type and method of governmental planning and supports from tourism areas of district villages

2) Review of the method of distribution of tourism facilities and services and other services throughout the district

3) Review of rural land rules and regulations (agricultural and residential lands)in order to utilize them for the public and to prevent land expensiveness

4) Review the type and method of use of popular engagements in this sector in order to develop and equip villages and to assign the works to native people

WT Strategies

1) Holding seminars and meetings on the development of investment in rural tourism industry by the city council and other relevant institutions and authorities and inviting several investors

2) Preparing the grounds and encouraging people in parallel with development and equipping the villages with respect to tourism infrastructures, facilities and equipment under governmental supports

3) Training and informing the people how to receive the tourists, training the tourists on the culture and traditions and local and traditional regulations

4) Formulation of special rules to optimally use tourism attractions, products and services of the district for the tourists in order to prevent from destruction of attractions

Research Article

The results obtained from prioritization of advantages, disadvantages, opportunities and threats and evaluations made by exerts and authorities from SWOT elements in terms of a weighing method indicate that in the advantage group, S1 (with a final weight of 0.896) is the most important advantage. Moreover, W4 was specified as the disadvantage factor of this area. As to the factor of opportunities, 06 can be pointed out with the highest weight among the opportunities and in all SWOT elements (a weight of 0.852). Moreover, T1 with the highest weight was put in the first priority.

Codification of Strategy (Comparison)

SWOT matrix and internal/external factors assessment matrices were used to devise different types of feasible Strategies in planning (Table 4):

• Codification of SO Strategies

All desire a situation where they all can maximize their strengths and opportunities. In spite of defensive strategy, as a reactive one, invasive Strategies are proactive.

• Codification of WO Strategies

The Strategies are aimed to use opportunities in the outside and to improve internal weaknesses. Sometimes, there are several opportunities outsides while the rural tourism fails to use them due to some internal weaknesses.

• Codifications of ST Strategies

The Strategies are designed based on strength point of rural tourism to fight the threats. The main goal is to maximize the advantages and minimize the threats. However, as suggested by experiment, inappropriate use of strength point may end up in negative results. Any reasonable plan shall be cautious when it uses its strength points to fight the threats.

• Codification of WT Strategies

The most conservative Strategies are WT Strategies which mainly adopt defensive modes and try to minimize internal weaknesses and avoid threats caused by external factors (Golkar, 2005; Eftekhari and Mahdavi, 2006).

At each moment, two factors are compared with each in SWOT, as it is not to find the best strategy. In fact, the matrix is aimed to find feasible Strategies so every strategy in SWOT is not necessarily feasible. *Internal and External Matrix (IE)*

The matrix is used to determine general status of the Strategies. Development of IE matrix based on previous surveys enables us to predict effect of strategic decisions on the residential complex. The IE matrix can be divided into four regions each of which dictates different Strategies (Figure 2).

Average total points of external/internal factors assessment matrix (3.34 and 3.40 respectively) showed that the factors under consideration are located in the second regions. Thus, based on the analyses and the explanations, ST Strategies are feasible.

Research Article

Table 5: Fuzzy QSPM Matrix

	SO3		SO2			SO1			
TAS	AS	TAS	AS	TAS	AS	TAS	AS	weights	factors
	(0,0.3,0.5)	(0.229,0.82,1.312)	(0.7,1,1)	(0,0,1.683)	(0,0,0.3)	(0,0,0)	-	0.896	S 1
	-	(0,0,0.481,)	(0,0,0.3)	(0,0.417,0.802)	(0,0.3,0.5)	(0.674,1.391,1.605)	(0.7,1,1)	0.696	S 2
	(0,0,0.3)	(1.901,3.298,0.873)	(0.5,0.7,1)	(1.901,3.298,0.873)	(0.5,0.7,1)	(1.222,2.716,3.298)	(0.7,1,1)	0.25	S 3
	(0,0,0.3)	(0,0,0)	-	(0,1.152,2.304)	(0,0,0.3)	(0.711,1.706,0.189)	(0.2,0.5,0.8)	0.109	S 4
	(0,0,0.3)	(0.118,0.413,0.944)	(0.5,0.7,1)	(0.118,0.413,0.944)	(0.5,0.7,1)	(0.118,0413,0.944)	(0.5,0.7,1)	0.294	S5
33)	(0.5,0.7,1)	(0.711,1.706,0.189)	(0.2,0.5,0.8)	(0,0.426,1.066)	(0,0.3,0.5)	(0.663,1.422,2.133)	(0.7,1,1)	0.366	S6
2)	(0.7,1,1)	(0,1.152,2.304)	(0,0.3,0.5)	(0.229,0.82,1.312)	(0.7,1,1)	(0,0,1.683)	(0,0,0.3)	0.174	S7
5)	(0.2,0.5,0.8)	(0.264,1.65,3.696)	(0.2,0.5,0.8)	(0,0,0)	-	(0.229,0.82,1.312)	(0.7,1,1)	0.125	01
5)	(0.2,0.5,0.8)	(0.229,0.82,1.312)	(0,0,0.3)	(0,1.152,2.304)	(0,0.3,0.5)	(2.15,3.84,4.608)	(0.7,1,1)	0.204	02
	(0,0,0.3)	(0.229,0.82,1.312)	(0.7,1,1)	(0.711,1.706,0.189)	(0.7,1,1)	(0.66,2.31,4.62)	(0.5,0.7,1)	0.135	O3
5)	(0.2,0.5,0.8)	(0.711,1.706,0.189)	(0,0,0.3)	(0,1.152,2.304)	(0,0.3,0.5)	(2.15,3.84,4.608)	(0.7,1,1)	0.106	O4
	(0,0.3,0.5)	(0,1.152,2.304)	(0,0,0.3)	(0,0,0)	(0.2,0.5,0.8)	(0.275, 0.655, 1.048)	(0.7,1,1)	0.092	O5
38)	(0.2,0.5,0.8)	(0.663,1.422,2.133)	(0,0,0.3)	(0.079,0.327,0.838)	-	(0,0,0)	-	0.213	O6
12)	(0.5,0.7,1)	(0.229,0.82,1.312)	(0.7,1,1)	(0.164,0.574,1.312)	(0.5,0.7,1)	(0,0.246,0.656)	(0,0.3,0.5)	0.125	07
.001)		(2.131,8.55,17.761)		(2.903,11.432,20.578)		(8.172,18.625,27.525)			FSTAS
		9.015		11.535		18.366		Fina	al weights
		4		2		1		priorities	for action
	TAS (33) (2) (5) (5) (38) (2) (001)	TAS AS (0,0,3,0.5) - (0,0,0.3) (0,0,0.3) (0,0,0.3) (0,0,0.3) (0,0,0.3) (0,0,0.3) (3) (0.5,0.7,1) (2) (0.7,1,1) (3) (0.2,0.5,0.8) (0,0,0.3) (0,0,0.3) (3) (0.2,0.5,0.8) (0,0,0,3,0.5) (0,0,3,0.5) (3) (0.2,0.5,0.8) (0,0,3,0.5) (0,2,0,5,0.8) (2) (0.5,0,7,1) .001)	TAS AS TAS (0,0.3,0.5) (0.229,0.82,1.312) - (0,0,0.481,) (0,0,0.3) (1.901,3.298,0.873) (0,0,0.3) (0,0,0) (0,0,0.3) (0,0,0) (0,0,0.3) (0,118,0.413,0.944) (3) (0.5,0.7,1) (0.711,1.706,0.189) (0) (0,71,1) (0,1.152,2.304) (0) (0,2,0.5,0.8) (0.229,0.82,1.312) (0,0,0.3) (0,211,1.706,0.189) (0) (0,2,0.5,0.8) (0.229,0.82,1.312) (0,0,0,3,0.5) (0,1.152,2.304) (3) (0.2,0.5,0.8) (0.663,1.422,2.133) (2) (0.5,0.7,1) (0.229,0.82,1.312) (0,01) (0.2,0.5,0.8) (0.663,1.422,2.133) (2) (0.5,0.7,1) (0.229,0.82,1.312) (001) (2.131,8.55,17.761) 9.015 4	SO3 TAS AS TAS AS (0,0.3,0.5) (0.229,0.82,1.312) (0.7,1,1) - (0,0,0.481,) (0,0,0.3) (0,0,0.3) (1.901,3.298,0.873) (0.5,0.7,1) (0,0,0.3) (0,0,0) - (0,0,0.3) (0,0,0) - (0,0,0.3) (0,0,0) - (0,0,0.3) (0,118,0.413,0.944) (0.5,0.7,1) (0,0,0.3) (0,711,1.706,0.189) (0.2,0.5,0.8) (0,7,1,1) (0,1.152,2.304) (0,0,0.3) (0,2,0,5,0.8) (0.229,0.82,1.312) (0,0,0.3) (0,0,0.3) (0,229,0.82,1.312) (0,0,0.3) (0,0,0,3,0.5) (0,1.152,2.304) (0,0,0.3) (0,0,0,3,0.5) (0,1.152,2.304) (0,0,0.3) (0,0,0,3,0.5) (0,1.152,2.304) (0,0,0.3) (0,0,3,0.5) (0,1.152,2.304) (0,0,0.3) (0,0,3,0.5) (0,1.152,2.304) (0,0,0.3) (0,0,3,0.5) (0,1.152,2.304) (0,0,0.3) (2) (0.5,0.7,1) (0.229,0.82,1.312)	SO3 SO2 TAS AS TAS AS TAS $(0,0,3,0.5)$ $(0.229,0.82,1.312)$ $(0.7,1,1)$ $(0,0.1.683)$ $ (0,0,0.481,)$ $(0,0,0.3)$ $(0,0.417,0.802)$ $(0,0,0.3)$ $(1.901,3.298,0.873)$ $(0.5,0.7,1)$ $(1.901,3.298,0.873)$ $(0,0,0.3)$ $(1.901,3.298,0.873)$ $(0.5,0.7,1)$ $(1.911,3.298,0.873)$ $(0,0,0.3)$ $(0,0,0)$ $ (0,1.152,2.304)$ $(0,0,0.3)$ $(0.118,0.413,0.944)$ $(0.5,0.7,1)$ $(0.118,0.413,0.944)$ (3) $(0.5,0.7,1)$ $(0.711,1,706,0.189)$ $(0.2,0.5,0.8)$ $(0.229,0.82,1.312)$ $(0,7,1,1)$ $(0,1.152,2.304)$ $(0,0,0.3)$ $(0,1.152,2.304)$ $(0,0,0.3)$ $(0.229,0.82,1.312)$ $(0,0,0.3)$ $(0,1.152,2.304)$ $(0,0,0.3)$ $(0.229,0.82,1.312)$ $(0,0,0.3)$ $(0,1.152,2.304)$ $(0,0,0.3,0.5)$ $(0,2.0.5,0.8)$ $(0.663,1.422,2.133)$ $(0,0,0.3)$ $(0,1.152,2.304)$ $(0,0,3,0.5)$ $(0.229,0.82,1.312)$ $(0,0,0.3)$ $(0.0.79,0.327,0.838)$	TAS AS TAS AS GO3 SO2 $(0,0,3,0.5)$ $(0.229,0.82,1.312)$ $(0.7,1,1)$ $(0,0.1.683)$ $(0,0,0.3)$ $ (0,0,0.481,)$ $(0,0,0.3)$ $(0,0.417,0.802)$ $(0,5,0.7,1)$ $(0,0,0.3)$ $(1.901,3.298,0.873)$ $(0.5,0.7,1)$ $(1.901,3.298,0.873)$ $(0.5,0.7,1)$ $(0,0,0.3)$ $(0,0,0.3)$ $(0,0,0.3)$ $(0,0,0.3)$ $(0,0,0.3)$ $(0,0,0.3)$ $(0,0,0.3)$ $(0,0,0.3)$ $(0,0,0.3)$ $(0,0,0.3)$ $(0,0,0.3)$ $(0,0,0.3)$ $(0,1.152,2.304)$ $(0,1.152,2.304)$ $(0,0.3,0.5)$ $(0,5,0.7,1)$ $(0.711,1.706,0.189)$ $(0.2,0.5,0.8)$ $(0.24,1.65,3.696)$ $(0.2,0.5,0.8)$ $(0,0,0.3)$ $(0,2,0.5,0.8)$ $(0.229,0.82,1.312)$ $(0,0,0.3)$ $(0,1.152,2.304)$ $(0,0,0.3)$ $(0,7,1,1)$ $(0,0,0.3)$ $(0.229,0.82,1.312)$ $(0,0,0.3)$ $(0,1.152,2.304)$ $(0,0,0.3)$ $(0,0.3,0.5)$ $(0,0,0.3)$ $(0,21.5,0.8)$ $(0,71,1,706,0.189)$ $(0,0,0.3)$ $(0,0,0.3,0.5)$ $(0,2.0.5,0.8)$ <t< td=""><td>SO3 SO2 SO1 TAS AS TAS AS TAS AS TAS $(0,0,3,0,5)$ $(0,229,0.82,1.312)$ $(0,7,1,1)$ $(0,0,1.683)$ $(0,0,0.3)$ $(0,0,0)$ $(0,0,0.481,1)$ $(0,0,0.3)$ $(0,0.417,0.802)$ $(0,0.3,0.5)$ $(0.57,1,1,0.505)$ $(0,0,0.3)$ $(1.901,3.298,0.873)$ $(0.5,0.7,1)$ $(1.901,3.298,0.873)$ $(0.5,0.7,1)$ $(1.222,2.716,3.298)$ $(0,0,0.3)$ $(0,0,0)$ $(0,1.152,2.304)$ $(0,0.0,3)$ $(0.711,1.706,0.189)$ $(0,0,0.3)$ $(0.118,0.413,0.944)$ $(0.5,0.7,1)$ $(0.71,1,1)$ $(0,118,0.413,0.944)$ $(0,0,0.3)$ $(0.711,1.706,0.189)$ $(0.2,0.5,0.8)$ $(0.29,0.82,1.312)$ $(0,0.3)$ $(0.71,1)$ $(0,0.1.683)$ $(0,0,0.3)$ $(0.20,5,0.8)$ $(0.229,0.82,1.312)$ $(0,0.3)$ $(0.71,1)$ $(0,0.1.683)$ $(0,0,0.3)$ $(0.229,0.82,1.312)$ $(0,0.3)$ $(0,1.152,2.304)$ $(0,0.3,0.5)$ $(2.15,3.84,4.608)$ $(0,0,0.3)$ $(0.229,0.82,1.312)$ $(0,71,1)$ <t< td=""><td>TAS AS TAS AS TAS AS AS TAS AS $(0,0,3,0,5)$ $(0,229,082,1312)$ $(0,7,1,1)$ $(0,0,1683)$ $(0,0,0,3)$ $(0,0,0,481,)$ $(0,0,1,30,5)$ $(0,0,0,30,5)$ $(0,0,0,481,)$ $(0,0,0,3)$ $(0,0,0,30,5)$ $(0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1$</td><td>TAS NS TAS AS TAS OUNCLINES OU</td></t<></td></t<>	SO3 SO2 SO1 TAS AS TAS AS TAS AS TAS $(0,0,3,0,5)$ $(0,229,0.82,1.312)$ $(0,7,1,1)$ $(0,0,1.683)$ $(0,0,0.3)$ $(0,0,0)$ $ (0,0,0.481,1)$ $(0,0,0.3)$ $(0,0.417,0.802)$ $(0,0.3,0.5)$ $(0.57,1,1,0.505)$ $(0,0,0.3)$ $(1.901,3.298,0.873)$ $(0.5,0.7,1)$ $(1.901,3.298,0.873)$ $(0.5,0.7,1)$ $(1.222,2.716,3.298)$ $(0,0,0.3)$ $(0,0,0)$ $ (0,1.152,2.304)$ $(0,0.0,3)$ $(0.711,1.706,0.189)$ $(0,0,0.3)$ $(0.118,0.413,0.944)$ $(0.5,0.7,1)$ $(0.71,1,1)$ $(0,118,0.413,0.944)$ $(0,0,0.3)$ $(0.711,1.706,0.189)$ $(0.2,0.5,0.8)$ $(0.29,0.82,1.312)$ $(0,0.3)$ $(0.71,1)$ $(0,0.1.683)$ $(0,0,0.3)$ $(0.20,5,0.8)$ $(0.229,0.82,1.312)$ $(0,0.3)$ $(0.71,1)$ $(0,0.1.683)$ $(0,0,0.3)$ $(0.229,0.82,1.312)$ $(0,0.3)$ $(0,1.152,2.304)$ $(0,0.3,0.5)$ $(2.15,3.84,4.608)$ $(0,0,0.3)$ $(0.229,0.82,1.312)$ $(0,71,1)$ <t< td=""><td>TAS AS TAS AS TAS AS AS TAS AS $(0,0,3,0,5)$ $(0,229,082,1312)$ $(0,7,1,1)$ $(0,0,1683)$ $(0,0,0,3)$ $(0,0,0,481,)$ $(0,0,1,30,5)$ $(0,0,0,30,5)$ $(0,0,0,481,)$ $(0,0,0,3)$ $(0,0,0,30,5)$ $(0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1$</td><td>TAS NS TAS AS TAS OUNCLINES OU</td></t<>	TAS AS TAS AS TAS AS AS TAS AS $(0,0,3,0,5)$ $(0,229,082,1312)$ $(0,7,1,1)$ $(0,0,1683)$ $(0,0,0,3)$ $(0,0,0,481,)$ $(0,0,1,30,5)$ $(0,0,0,30,5)$ $(0,0,0,481,)$ $(0,0,0,3)$ $(0,0,0,30,5)$ $(0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1$	TAS NS TAS AS TAS OUNCLINES OU

© Copyright 2014 / Centre for Info Bio Technology (CIBTech)

Research Article

Qualitative Strategies Planning Matrix (QSPM) – Decision Making

Above all, based on the priority of the acceptable Strategies, found in previous stage, final Strategies were selected through intuitive judgment and final point of each measure was obtained using QSPM (Table 5). Results of analyses in the first stage and results of comparison of internal/external factors in the second stage were used in QSPM and explicit methods of the Strategies were obtained (David *et al.*, 2009).

That matrix was used to determine advantages of each strategy so that it determines explicitly what strategy is the best choice among the other.

• All factors were ranked from 1–4 based on the importance. The rank determines efficiency of current strategy to react to such factors. Rank 4 corresponds with high reactivity, 3 with reactivity more than average, 2 with average reactivity, and 1 with low reactivity.

• Score of each factor (0-1) was multiplied by the pertinent Attractiveness Scores (AS) to obtain Total Attractiveness Scores (TAS).

• Total Attractiveness Scores (TAS) of each variable was obtained to achieve Fuzzy Sum Total Attractiveness Scores (FSTAS) of each strategy.

Through the three stages internal factors can be studied in form of internal factors evaluation matrix. These stages correspond with stages of development of external factors evaluation.

Considering the matrixes of internal and external elements, SO strategies are selected for rural tourism planning in the studied area. These strategies include the followings by order of precedence.

Conclusion

For their improvement and sustainable income, villages need to formulate of a strategy to keep their population and to prevent from immigration to cities. Therefore, for any strategic decision making and planning in the villages, it is required that the existing situation is understood through studying internal and external environment factors. This is the responsibility of those analysts who are familiar with rural environment who should carefully review the effect of environmental variables on all its sectors including inputs and outputs. In other words, it is through environmental analysis that opportunities and threats of environment are specified and on that basis and considering the identification of rural advantages and disadvantages which should be made before that, the goals are determined and rural economic development procedures and policies are specified. This assists the managers to adopt an integrated procedure in facing with opportunities and threats of external environment and to achieve their objectives in the best manner.

Therefore, tourism strategies provide the ground for development of activity in the rural area and it can be effective in rural development as a spatial model by correct planning and management and by providing the necessary facilities and infrastructures. On this basis, offering strategies and solutions and identification and introduction of the ground for development of rural tourism may be in such a manner that it changes the process of tourism planning in this area. In fact, the results of research can provide suitable ideas for those who work in the field of regional planning so that planners and programmers can take an effective step in development of rural tourism by preparing accurate programs. In this study, after stating the necessity of the problem, the strategies were formulated in terms of a strategic planning. After selection of a sample population, matrix of Internal Factor Evaluation (IFE) and external factors (EFE) was formed. Expertise views were used to specify the coefficient of each of the factors and to make decision concerning strategic factors with low and high importance so that the results of matrixes are used for obtaining the final score. The results indicate the type of situation of the studied village as to the internal and external factors. In the next stage, SWOT matrix was specified through comparative evaluation in terms of ST, WO, ST and WT strategies. Then, the highest priority strategies were extracted for tourism by using Fuzzy QSPM.

REFERENCES

Akama JS and Kieti D (2007). Tourism and socio-economic development in developing countries: A case study of Mombasa Resort in Kenya. *Journal of Sustainable Tourism* **15**(6) 735-748.

Research Article

Bel F, Lacroix A, Lyser S, Rambonilaza T and Turpin N (2015). Domestic demand for tourism in rural areas: Insights from summer stays in three French regions. *Tourism Management* 46 562-570.

Carbone M (2005). Sustainable tourism in developing countries: poverty alleviation, participatory planning, and ethical issues. *The European Journal of Development Research* **17**(3) 559-565.

Cawley M and Gillmor DA (2008). Integrated rural tourism:: Concepts and Practice. *Annals of Tourism Research* **35**(2) 316-337.

Chang HH and Huang WC (2006). Application of a quantification SWOT analytical method. *Mathematical and Computer Modelling* **43**(1) 158-169.

Chen WM, Kim H and Yamaguchi H (2014). Renewable energy in eastern Asia: Renewable energy policy review and comparative SWOT analysis for promoting renewable energy in Japan, South Korea, and Taiwan. *Energy Policy* **74** 319-329.

Contini C, Scarpellini P and Polidori R (2009). Agri-tourism and rural development: The Low-Valdelsa case, Italy. *Tourism Review* 64(4) 27-36.

Ghimire KB (2013). The Native Tourist: Mass Tourism within Developing Countries (Routledge).

Hall CM and Page SJ (2014). The Geography of Tourism and Recreation: Environment, Place and Space 4th Edition: Environment, Place and Space (Routledge).

Haven-Tang C and Jones E (2012). Local leadership for rural tourism development: A case study of Adventa, Monmouthshire, UK. *Tourism Management Perspectives* **4** 28-35.

Huybers T (2007). *Tourism in Developing Countries* (Edward Elgar Publishing).

Hwang J and Lee S (2015). The effect of the rural tourism policy on non-farm income in South Korea. *Tourism Management* **46** 501-513.

Jackson SE, Joshi A and Erhardt NL (2003). Recent research on team and organizational diversity: SWOT analysis and implications. *Journal of Management* 29(6) 801-830.

Jennings G (2001). *Tourism Research* (John Wiley and Sons Australia, Ltd.).

Komppula R (2014). The role of individual entrepreneurs in the development of competitiveness for a rural tourism destination–A case study. *Tourism Management* 40 361-371.

Latkova P and Vogt CA (2012). Residents' attitudes toward existing and future tourism development in rural communities. *Journal of Travel Research* **51**(1) 50-67.

Lee TH (2013). Influence analysis of community resident support for sustainable tourism development. *Tourism Management* 34 37-46.

Liu A (2006). Tourism in rural areas: Kedah, Malaysia. Tourism Management 27(5) 878-889.

Ohe Y and Kurihara S (2013). Evaluating the complementary relationship between local brand farm products and rural tourism: Evidence from Japan. *Tourism Management* **35** 278-283.

Page SJ and Getz D (1997). *The Business of Rural Tourism: International Perspectives* (International Thomson Business Press).

Park DB and Yoon YS (2009). Segmentation by motivation in rural tourism: A Korean case study. *Tourism Management* **30**(1) 99-108.

Randelli F, Romei P and Tortora M (2014). An evolutionary approach to the study of rural tourism: The case of Tuscany. *Land Use Policy* 38 276-281.

Roberts L and Hall D (2001). Rural Tourism and Recreation: Principles to Practice (Cabi Publishing).

Sharpley R (2002). Rural tourism and the challenge of tourism diversification: the case of Cyprus. *Tourism Management* **23**(3) 233-244.

Smith SL (2014). Tourism Analysis: A Handbook (Routledge).

Terrados J, Almonacid G and Hontoria L (2007). Regional energy planning through SWOT analysis and strategic planning tools: Impact on renewables development. *Renewable and Sustainable Energy Reviews* **11**(6) 1275-1287.

Thurlow C and Jaworski A (2010). *Tourism Discourse: The Language of Global Mobility* (Palgrave Macm) 1-288.

Zhou LQ and Huang ZH (2004). Sustainable Development of Rural Tourism in China: Challenges and Policies [J]. *Economic Geography* **4** 035.

© Copyright 2014 / Centre for Info Bio Technology (CIBTech)